
US 20220272109A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0272109 A1

Szurdi et al . (43) Pub . Date : Aug. 25 , 2022

Publication Classification (54) AUTOMATED EXTRACTION AND
CLASSIFICATION OF MALICIOUS
INDICATORS

(71) Applicant : Palo Alto Networks , Inc. , Santa Clara ,
CA (US)

(72) Inventors : Janos Szurdi , Santa Clara , CA (US) ;
Daiping Liu , San Jose , CA (US) ; Jun
Wang , Fremont , CA (US)

(51) Int . CI .
H04L 29/06 (2006.01)
GOON 5/02 (2006.01)
GO6N 20/00 (2006.01)

(52) U.S. Cl .
CPC H04L 63/1416 (2013.01) ; GOON 5/025

(2013.01) ; GO6N 20/00 (2019.01)
(57) ABSTRACT
Techniques for generating actionable indicators of compro
mise (IOCs) are disclosed . A set of potential sources for
IOCs are received . One or more candidate IOCs are
extracted from at least one source included in the set of
potential sources . An actionable IOC is automatically iden
tified from the one or more candidate IOCs . The actionable
IOC is provided to a security enforcement service .

(21) Appl . No .: 17 / 185,760

(22) Filed : Feb. 25 , 2021

304
Main

Coordinator

306 -318
--308

-314
316 -310 -312

300
Target
Selector

Web
Crawler

Text / IOC
Extractor

DNS
Client

Intelligence
Gathering

Heuristic
Classifier

ML
Classifier

Source
Discovery

-320

-322

-302 Seed
Sources Database

Patent Application Publication Aug. 25 , 2022 Sheet 1 of 8 US 2022/0272109 A1

152 154 156 - (SOCIAL) Security Platform -146

- (VIDEO) - (NEWS) DB
124 Storage . -142

VM Server 122 1267 -128

VM - 1 VM - n
- (PORN) 150 -144 Coordinator

2767 y URL Classification Service

-120 Automated IOC
Extraction System -300

158–

WWE

130 138

DNS
1 Data
Appliance

168 (MAIL)
-118 -148

134 1

App
Store

Data
Appliance

114
140 -136

EP 160

1
1

Data Appliance DNS DDO -116
166– -110 Proxy

App - ID
Engine 102 1321

1
1 MDM

Server
1
1 164

104
112 162

EP
FIG . 1

-108 -106

Patent Application Publication Aug. 25 , 2022 Sheet 2 of 8 US 2022/0272109 A1

-102

Data Appliance

-202 -204 -210

CPU RAM Storage

-208 -206

FPGA Crypto
Engine

FIG . 2A

Patent Application Publication Aug. 25 , 2022 Sheet 3 of 8 US 2022/0272109 A1

102

-232 Management Plane I / F
Communicator Policies

-250 2427

Data Plane
/

. 116 -244
App - ID Decoder (s)

-234
240 -246

SSL
Decryption

SSL
Encryption ?

238 -248
Flow Forward

Network
Processor

236

FIG . 2B

Patent Application Publication Aug. 25 , 2022 Sheet 4 of 8 US 2022/0272109 A1

Security Platform

URL Classification Service -282 -122
276 Crawler 1

-284 -286
E e .

Classifier Model
Classified
Site DB Crawler n

118

232

-262 -268 -266 Server
122

Cache -272
DNS
Cache

Database
262

Cache

URL
Database 242

Policies - 102
Management Plane

-264 -270
Low

Latency
Cache

DNS
Cache

Data Plane

234
URL (274)

-106

FIG . 2C

304

Main Coordinator

Patent Application Publication

306

-318

308

314 316

310

-312

300

Target Selector
Web Crawler

Text / IOC Extractor
DNS Client

Intelligence Gathering
Heuristic Classifier
ML Classifier
Source Discovery 320

Aug. 25 , 2022 Sheet 5 of 8

322

302

Seed Sources

Database

US 2022/0272109 A1

FIG . 3

Patent Application Publication Aug. 25 , 2022 Sheet 6 of 8 US 2022/0272109 A1

400

402
Receive a set of potential sources for Indicators of

Compromise (IOCs) .

404
Extract one or more candidate IOCs from at least one

potential source .

406
Automatically identify an actionable IOC from the candidate

IOC (s) .

408
Provide the actionable IOC to a security enforcement

service .

FIG . 4

Patent Application Publication Aug. 25 , 2022 Sheet 7 of 8 US 2022/0272109 A1

Cybercriminals have launched a phishing campaign to steal the login
credentials of Rainbow Bank's customers . The attack was carried out
through spam emails , where the perpetrators sent out several emails to
the bank's customers telling them that their password needed to be
changed

The emails contained links to multiple fraudulent websites mimicking
rainbowbank.com . The webpages looked exactly like rainbowbank.com ,
except that they were set up to ask for the username , the old password
and a new password .

To make their attack inconspicuous , the criminal group registered
multiple typosquatting domains such as ralnbowbank [.] com and
rainbobank?] com . When users opened the website , they might have
missed the slight difference in the domain name . To make their attack
worse the phishers acquired valid certificates for their domain names .
These certificates ensured that the browser displays a green lock icon
providing users a sense of safety . We provide the full list of phishing
URLs on https Ipastebin.com/cWK798xx .

FIG . 5A

Patent Application Publication Aug. 25 , 2022 Sheet 8 of 8 US 2022/0272109 A1

< div >
< p > Cybercriminals have launched a phishing campaign to steal the login
credentials of Rainbow Bank's customers . The attack was carried out
through spam emails , where the perpetrators sent out several emails to
the bank's customers telling them that their password needed to be
changed . < / p >

< p > The emails contained links to multiple fraudulent websites mimicking
< i > rainbowbank.com < / i > . The webpages looked exactly like
< i > rainbowbank.com < / i > , except that they were set up to ask for the
username , the old password and a new password . < / p >

< p > To make their attack inconspicuous , the criminal group registered
multiple typosquatting domains such as < i > ra < span style = " color :
red " > | < / span > nbowbank [.] com < / i > and < i > rainb < span style = " color :
red " > O < / span > bank [.] com < / i > . When users opened the website , they
might have missed the slight difference in the domain name . To make
their attack worse , the phishers acquired valid certificates for their
domain names . These certificates ensured that the browser displays a
green lock icon providing users a sense of safety . We provide the full list
of phishing URLs on < a href = " https://pastebin.com/cWK298xx "
> https://pastebin.com/cWKZ98xx . < / p >

 < / div >

FIG . 5B

US 2022/0272109 Al Aug. 25 , 2022
1

AUTOMATED EXTRACTION AND
CLASSIFICATION OF MALICIOUS

INDICATORS

BACKGROUND OF THE INVENTION
[0001] Nefarious individuals attempt to compromise com
puter systems in a variety of ways . As one example , such
individuals may embed or otherwise include malicious soft
ware (“ malware ”) in email attachments and transmit (or
cause the malware to be transmitted) to unsuspecting users .
When executed , the malware compromises the victim's
computer . Some types of malware will instruct a compro
mised computer to communicate with a remote host . For
example , malware can turn a compromised computer into a
“ bot ” in a “ botnet , ” receiving instructions from and / or
reporting data to a command and control (C & C) server
under the control of the nefarious individual . One approach
to mitigating the damage caused by malware is for a security
company (or other appropriate entity) to attempt to identify
malware and prevent it from reaching / executing on end user
computers . Another approach is to try to prevent compro
mised computers from communicating with the C & C server .
Unfortunately , malware authors are using increasingly
sophisticated techniques to obfuscate the workings of their
software . Accordingly , there exists an ongoing need for
improved techniques to detect malware and prevent its
harm .

time or a specific component that is manufactured to per
form the task . As used herein , the term “ processor ' refers to
one or more devices , circuits , and / or processing cores con
figured to process data , such as computer program instruc
tions .
[0012] A detailed description of one or more embodiments
of the invention is provided below along with accompanying
figures that illustrate the principles of the invention . The
invention is described in connection with such embodi
ments , but the invention is not limited to any embodiment .
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives , modifi
cations and equivalents . Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention . These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details . For the purpose of clarity , technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured .

I. Overview

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Various embodiments of the invention are dis
closed in the following detailed description and the accom
panying drawings .
[0003] FIG . 1 illustrates an example of an environment in
which policies are enforced .
[0004] FIG . 2A illustrates an embodiment of a data appli
ance .

[0005] FIG . 2B illustrates logical components of an
embodiment of a data appliance .
[0006] FIG . 2C illustrates an embodiment of a data appli
ance .

[0007] FIG . 3 illustrates an embodiment of an automated
indicator of compromise extraction system .
[0008] FIG . 4 illustrates an embodiment of a process for
generating actionable indicators of compromise .
[0009] FIG . 5A illustrates a portion of user - visible text .
[0010] FIG . 5B illustrates source code corresponding to
the text shown in FIG . 5A .

[0013] A firewall generally protects networks from unau
thorized access while permitting authorized communica
tions to pass through the firewall . A firewall is typically a
device , a set of devices , or software executed on a device
that provides a firewall function for network access . For
example , a firewall can be integrated into operating systems
of devices (e.g. , computers , smart phones , or other types of
network communication capable devices) . A firewall can
also be integrated into or executed as one or more software
applications on various types of devices , such as computer
servers , gateways , network / routing devices (e.g. , network
routers) , and data appliances (e.g. , security appliances or
other types of special purpose devices) , and in various
implementations , certain operations can be implemented in
special purpose hardware , such as an ASIC or FPGA .
[0014] Firewalls typically deny or permit network trans
mission based on a set of rules . These sets of rules are often
referred to as policies (e.g. , network policies or network
security policies) . For example , a firewall can filter inbound
traffic by applying a set of rules or policies to prevent
unwanted outside traffic from reaching protected devices . A
firewall can also filter outbound traffic by applying a set of
rules or policies (e.g. , allow , block , monitor , notify or log ,
and / or other actions can be specified in firewall rules or
firewall policies , which can be triggered based on various
criteria , such as are described herein) . A firewall can also
filter local network (e.g. , intranet) traffic by similarly apply
ing a set of rules or policies .
[0015] Security devices (e.g. , security appliances , security
gateways , security services , and / or other security devices)
can include various security functions (e.g. , firewall , anti
malware , intrusion prevention / detection , Data Loss Preven
tion (DLP) , and / or other security functions) , networking
functions (e.g. , routing , Quality of Service (QoS) , workload
balancing of network related resources , and / or other net
working functions) , and / or other functions . For example ,
routing functions can be based on source information (e.g. ,
IP address and port) , destination information (e.g. , IP
address and port) , and protocol information .
[0016] A basic packet filtering firewall filters network
communication traffic by inspecting individual packets

DETAILED DESCRIPTION

[0011] The invention can be implemented in numerous
ways , including as a process ; an apparatus ; a system ; a
composition of matter ; a computer program product embod
ied on a computer readable storage medium ; and / or a
processor , such as a processor configured to execute instruc
tions stored on and / or provided by a memory coupled to the
processor . In this specification , these implementations , or
any other form that the invention may take , may be referred
to as techniques . In general , the order of the steps of
disclosed processes may be altered within the scope of the
invention . Unless stated otherwise , a component such as a
processor or a memory described as being configured to
perform a task may be implemented as a general component
that is temporarily configured to perform the task at a given

US 2022/0272109 A1 Aug. 25 , 2022
2

specific processing that is tightly integrated with a single
pass software engine to maximize network throughput while
minimizing latency) .
[0020] Advanced or next generation firewalls can also be
implemented using virtualized firewalls . Examples of such
next generation firewalls are commercially available from
Palo Alto Networks , Inc. (e.g. , Palo Alto Networks ' VM
Series firewalls , which support various commercial virtual
ized environments , including , for example , VMware®
ESXiTM and NSXTM , Citrix® Netscaler SDXTM , KVM /
OpenStack (Centos / RHEL , Ubuntu®) , and Amazon Web
Services (AWS)) . For example , virtualized firewalls can
support similar or the exact same next - generation firewall
and advanced threat prevention features available in physi
cal form factor appliances , allowing enterprises to safely
enable applications flowing into , and across their private ,
public , and hybrid cloud computing environments . Automa
tion features such as VM monitoring , dynamic address
groups , and a REST - based API allow enterprises to proac
tively monitor VM changes dynamically feeding that con
text into security policies , thereby eliminating the policy lag
that may occur when VMs change .

transmitted over a network (e.g. , packet filtering firewalls or
first generation firewalls , which are stateless packet filtering
firewalls) . Stateless packet filtering firewalls typically
inspect the individual packets themselves and apply rules
based on the inspected packets (e.g. , using a combination of
a packet's source and destination address information , pro
tocol information , and a port number) .
[0017] Application firewalls can also perform application
layer filtering (e.g. , application layer filtering firewalls or
second generation firewalls , which work on the application
level of the TCP / IP stack) . Application layer filtering fire
walls or application firewalls can generally identify certain
applications and protocols (e.g. , web browsing using Hyper
Text Transfer Protocol (HTTP) , a Domain Name System
(DNS) request , a file transfer using File Transfer Protocol
(FTP) , and various other types of applications and other
protocols , such as Telnet , DHCP , TCP , UDP , and TFTP
(GSS)) . For example , application firewalls can block unau
thorized protocols that attempt to communicate over a
standard port (e.g. , an unauthorized / out of policy protocol
attempting to sneak through by using a non - standard port for
that protocol can generally be identified using application
firewalls) .
[0018] Stateful firewalls can also perform state - based
packet inspection in which each packet is examined within
the context of a series of packets associated with that
network transmission's flow of packets . This firewall tech
nique is generally referred to as a stateful packet inspection
as it maintains records of all connections passing through the
firewall and is able to determine whether a packet is the start
of a new connection , a part of an existing connection , or is
an invalid packet . For example , the state of a connection can
itself be one of the criteria that triggers a rule within a policy .
[0019] Advanced or next generation firewalls can perform
stateless and stateful packet filtering and application layer
filtering as discussed above . Next generation firewalls can
also perform additional firewall techniques . For example ,
certain newer firewalls sometimes referred to as advanced or
next generation firewalls can also identify users and content
(e.g. , next generation firewalls) . In particular , certain next
generation firewalls are expanding the list of applications
that these firewalls can automatically identify to thousands
of applications . Examples of such next generation firewalls
are commercially available from Palo Alto Networks , Inc.
(e.g. , Palo Alto Networks ' PA Series firewalls) . For example ,
Palo Alto Networks ' next generation firewalls enable enter
prises to identify and control applications , users , and con
tent — not just ports , IP addresses , and packets using vari
ous identification technologies , such as the following : APP
ID for accurate application identification , User - ID for user
identification (e.g. , by user or user group) , and Content - ID
for real - time content scanning (e.g. , controlling web surfing
and limiting data and file transfers) . These identification
technologies allow enterprises to securely enable application
usage using business - relevant concepts , instead of following
the traditional approach offered by traditional port - blocking
firewalls . Also , special purpose hardware for next generation
firewalls (implemented , for example , as dedicated appli
ances) generally provide higher performance levels for
application inspection than software executed on general
purpose hardware (e.g. , such as security appliances provided
by Palo Alto Networks , Inc. , which use dedicated , function

II . Example Environment
[0021] FIG . 1 illustrates an example of an environment in
which policies are enforced . Included in the environment are
two Domain Name System (DNS) servers (130 and 132) .
Typically , when attempting to access a URL , a web browser
(e.g. , executing on a client device) forwards a request to a
DNS server (e.g. , DNS server 130) to resolve the domain
name of the URL into a corresponding (Internet Protocol
(IP) address . In response to receiving a valid IP address for
a requested domain name , the client can connect to a
corresponding content server (e.g. , site 152) using the IP
address to request a desired resource . The content server
responds with the requested resource if the requested
resource is available at the content server or responds with
an error message or with a redirect to another content server
if the requested resource is not available at the content
server .

a

[0022] Also shown in FIG . 1 is an example enterprise
network 140 which belongs to an entity hereinafter referred
to as ACME Corporation . Enterprise network 140 includes
an enterprise DNS server 132. Enterprise DNS server 132 is
configured to resolve enterprise domain names into IP
addresses , and is further configured to communicate with
one or more external DNS servers (e.g. , DNS server 130) to
resolve domain names . Also included within enterprise
network 140 are example client devices 104-108 , which are
a laptop computer , a desktop computer , and a tablet (respec
tively) . Laptop 104 and desktop computer 106 are owned by
ACME , and tablet 108 is personally owned by an ACME
employee hereinafter referred to as Alice . Client device 110
is a laptop computer located outside of enterprise network
140 .
[0023] Client devices , such as client devices 104-110 can
each execute a variety of applications . The term “ applica tion " is used throughout the Specification to collectively
refer to programs , bundles of programs , manifests , pack
ages , etc. , irrespective of form / platform . An " application "
(also referred to herein as a " sample ”) can be a standalone
file (e.g. , a calculator application having the filename “ cal
culator.apk ” or “ calculator.exe ”) and can also be an inde
pendent component of another application (e.g. , a mobile

US 2022/0272109 A1 Aug. 25 , 2022
3

*

advertisement software development kit (SDK) or library
embedded within the calculator app) .
[0024] “ Malware ” as used herein refers to an application
that engages in behaviors , whether clandestinely or not (and
whether illegal or not) , of which a user does not approve /
would not approve if fully informed . Examples of malware
include Trojans , viruses , rootkits , spyware , hacking tools ,
keyloggers , etc. One example of malware is a desktop
application that collects and reports to a remote server the
end user's location (but does not provide the user with
location - based services , such as a mapping service) . Another
example of malware is a malicious Android Application
Package .apk (APK) file that appears to an end user to be a
free game , but stealthily sends SMS premium messages
(e.g. , costing $ 10 each) , running up the end user's phone
bill . Another example of malware is an Apple iOS flashlight
application that stealthily collects the user's contacts and
sends those contacts to a spammer .
[0025] Other forms of malware can also be mitigated
using the techniques described herein (e.g. , ransomware) .
And , while examples provided throughout the Specification
generally refer to malicious applications , techniques
described herein can also be used in various embodiments
with respect to other kinds of applications (e.g. , adware ,
goodware , etc.) . In some cases , an end user of an application
(e.g. , Alice) may approve of functionality provided by an
application , while another entity (e.g. , ACME) may not . As
two examples , Alice may intentionally have gambling appli
cations or pornographic - themed applications installed on her
tablet 108. In contrast , ACME may have corporate policies
prohibiting employees from using enterprise network 140
for such applications . As will be described in more detail
below , ACME can enforce policies against the use of such
applications within enterprise network 140 .
[0026] Techniques described herein can be used in con
junction with a variety of platforms (e.g. , desktops , mobile
devices , gaming platforms , embedded systems , etc.) and / or
a variety of types of applications (e.g. , Android .apk files ,
iOS applications , Windows PE files , Adobe Acrobat PDF
files , etc.) .
[0027] Data appliance 102 (also included within enterprise
network 140) is configured to enforce policies regarding
communications between client devices , such as client
devices 104 and 106 , and nodes outside of enterprise net
work 140 (e.g. , reachable via one or more external networks
collectively depicted as network cloud 118) . One example of
a policy is a rule prohibiting any access to site 150 (a
pornographic website) by any client inside enterprise net
work 140. Another example of a policy is a rule prohibiting
access to social networking site 156 by clients between the
hours of 9 am and 6 pm . Yet another example of a policy is
a rule allowing access to video streaming website 152 ,
subject to a bandwidth or other consumption constraint . Yet
another example of a policy is one that logs the time spent
by employees using social networking sites (e.g. , where
there is an understanding that employees will sometimes
visit such sites throughout the workday , but should limit
such activities to fifteen minutes per day) . Policies can be
made to apply to all devices equally , and can also be applied
at more granular levels . For example , access to social
networking site 156 can be permitted to anyone in the
ACME marketing department (e.g. , users having associated
group identifiers indicating their affiliation with the market
ing department) , and unfettered bandwidth for use with

video streaming website 152 can be granted to specific users
(e.g. , the CEO) , to groups of users (e.g. , the ACME sales
department) , and / or to individual groups of clients (e.g. ,
prohibiting access to video streaming site 152 on production
servers) . Access to sites (e.g. , news site 154) can be explic
itly permitted (e.g. , a rule allowing access to site 154 via
URL (“ www.examplenews.com ") or category (" NEWS ")) ,
and can also be permitted by virtue of not being prohibited
(e.g. , “ access to any site not prohibited is allowed , ” e.g. ,
allowing access to web mail site 168 without needing to
explicitly name the site in the rule) .
[0028] Other types of policies can also be enforced , such
as ones governing traffic shaping , quality of service , and / or
routing (e.g. , with respect to a given domain , a pattern
including a domain (e.g. , * .examplenews.com) , a category
associated with a domain , other hostname - associated infor
mation (e.g. , URL) , IP address range , etc.) . Yet other
examples of policies include security policies such as ones
requiring the scanning for threats in incoming (and / or out
going) email attachments , screening of website content ,
scanning files exchanged through instant messaging pro
grams , and / or other file transfers . In some embodiments ,
data appliance 102 is also configured to enforce policies
with respect to traffic that stays within enterprise network
140 .
[0029] In various embodiments , data appliance 102
executes a DNS proxy service 166 (described in more detail
below) . When a client device (e.g. , client device 108)
attempts to communicate with a network resource (e.g. ,
video streaming website 152) , a DNS request is received by
DNS proxy service 166 , which provides a response back to
client device 108. As applicable , the response is cached by
data appliance 102 .
[0030] In various embodiments , other devices are also
included in enterprise network 140 , such as a mobile device
management (MDM) server 162 , which is in communication
with data appliance 102. MDM server 162 communicates
with mobile devices to determine device status and to report
(e.g. , periodically) such mobile device status information to
data appliance 102. MDM server 162 can be configured to
report the presence of malicious applications installed on
client devices , and / or can be configured to receive indica
tions of which applications are malicious (e.g. , from data
appliance 102 , from security platform 122 , or combinations
thereof) . In some embodiments , data appliance 102 is con
figured to enforce policies against client devices based on
information received from MDM server 162. For example ,
if a client device is determined to have malware installed on
it (or other types of unapproved applications) , data appliance
102 (working in cooperation with MDM server 162) can
deny the client device access to certain enterprise resources
(e.g. , an Intranet) while allowing other client devices (which
do not have malware installed on them) access to those

a

a

resources .

ances

[0031] Although illustrated as a single element in FIG . 1 ,
enterprise network 140 can comprise multiple networks ,
any / each of which can include one or multiple data appli

or other components that embody techniques
described herein . For example , the techniques described
herein can be deployed by large , multi - national companies
(or other entities) with multiple offices in multiple geo
graphical locations . And , while client devices 104-108 are
illustrated in FIG . 1 as connecting directly to data appliance
102 , it is to be understood that one or more intermediate

US 2022/0272109 A1 Aug. 25 , 2022
4

a

new

nodes (e.g. , routers , switches , and / or proxies) can be and
typically are interposed between various elements in enter
prise network 140 .
[0032] An embodiment of a data appliance is shown in
FIG . 2A . The example shown is a representation of physical /
hardware components that are included in data appliance
102 , in various embodiments . Specifically , data appliance
102 includes a high performance multi - core Central Pro
cessing Unit (CPU) 202 and Random Access Memory
(RAM) 204. Data appliance 102 also includes a storage 210
(such as one or more hard disk drives or solid state storage
units) , which can be used to store policy and other configu
ration information , as well as other information such as
signatures and hostname / URL categorization information .
In various embodiments , data appliance 102 stores (whether
in RAM 204 , storage 210 , and / or in other appropriate
locations) information used in monitoring enterprise net
work 140 and implementing disclosed techniques . Examples
of such information include application identifiers , content
identifiers , user identifiers , requested URLs , IP address
mappings , etc. Data appliance 102 can also include one or
more optional hardware accelerators . For example , data
appliance 102 can include a cryptographic engine 206
configured to perform encryption and decryption operations ,
and one or more Field Programmable Gate Arrays (FPGAs)
208 configured to perform matching , act as network proces
sors , and / or perform other tasks .
[0033] Functionality described herein as being performed
by data appliance 102 can be provided / implemented in a
variety of ways . For example , data appliance 102 can be a
dedicated device or set of devices . The functionality pro
vided by data appliance 102 can also be integrated into or
executed as software on a general purpose computer , a
computer server , a gateway , and / or a network / routing
device . In some embodiments , at least some services
described as being provided by data appliance 102 are
instead (or in addition) provided to a client device (e.g. ,
client devices 104 or 110) by software executing on the
client device (e.g. , endpoint protection applications 112 and
114) .
[0034] Whenever data appliance 102 is described as per
forming a task , a single component , a subset of components ,
or all components of data appliance 102 may cooperate to
perform the task . Similarly , whenever a component of data
appliance 102 is described as performing a task , a subcom
ponent may perform the task and / or the component may
perform the task in conjunction with other components . In
various embodiments , portions of data appliance 102 are
provided by one or more third parties . Depending on factors
such as the amount of computing resources available to data
appliance 102 , various logical components and / or features
of data appliance 102 may be omitted and the techniques
described herein adapted accordingly . Similarly , additional
logical components / features can be included in embodi
ments of data appliance 102 as applicable . One example of
a component included in data appliance 102 in various
embodiments is an application identification engine 116
which is configured to identify an application (e.g. , using
various application signatures for identifying applications
based on packet flow analysis) . For example , application
identification engine 116 can determine what type of traffic
a session involves , such as Web Browsing Social Net
working ; Web Browsing News ; SSH ; and so on .

[0035] FIG . 2B is a functional diagram of logical compo
nents of an embodiment of a data appliance . The example
shown is a representation of logical components that can be
included in data appliance 102 in various embodiments .
Unless otherwise specified , various logical components of
data appliance 102 are generally implementable in a variety
of ways , including as a set of one or more scripts (e.g. ,
written in Java , python , etc. , as applicable) .
[0036] As shown , data appliance 102 comprises a firewall ,
and includes a management plane 232 and a data plane 234 .
The management plane is responsible for managing user
interactions , such as by providing a user interface for
configuring policies and viewing log data . The data plane is
responsible for managing data , such as by performing packet
processing and session handling .
[0037] Network processor 236 is configured to receive
packets from client devices , such as client device 108 , and
provide them to data plane 234 for processing . Whenever
flow module 238 identifies packets as being part of
session , it creates a new session flow . Subsequent packets
will be identified as belonging to the session based on a flow
lookup . If applicable , SSL decryption is applied by SSL
decryption engine 240. Otherwise , processing by SSL
decryption engine 240 is omitted . Decryption engine 240
can help data appliance 102 inspect and control SSL / TLS
and SSH encrypted traffic , and thus help to stop threats that
might otherwise remain hidden in encrypted traffic . Decryp
tion engine 240 can also help prevent sensitive content from
leaving enterprise network 140. Decryption can be con
trolled (e.g. , enabled or disabled) selectively based on
parameters such as : URL category , traffic source , traffic
destination , user , user group , and port . In addition to decryp
tion policies (e.g. , that specify which sessions to decrypt) ,
decryption profiles can be assigned to control various
options for sessions controlled by the policy . For example ,
the use of specific cipher suites and encryption protocol
versions can be required .
[0038] Application identification (APP - ID) engine 116 is
configured to determine what type of traffic a session
involves . As one example , application identification engine
116 can recognize a GET request in received data and
conclude that the session requires an HTTP decoder . In some
cases , e.g. , a web browsing session , the identified applica
tion can change , and such changes will be noted by data
appliance 102. For example a user may initially browse to a
corporate Wiki (classified based on the URL visited as “ Web
Browsing Productivity ”) and then subsequently browse to
a social networking site (classified based on the URL visited
as “ Web Browsing Social Networking ”) . Different types
of protocols have corresponding decoders 244. Based on the
determination made by application identification engine 116 ,
the packets are sent to an appropriate decoder 244. Decoder
244 is configured to assemble packets (which may be
received out of order) into the correct order , perform tokeni
zation , and extract out information . Decoder 244 also per
forms signature matching to determine what should happen
to the packet . As needed , SSL encryption engine 246 can
re - encrypt decrypted data . Packets are forwarded using a
forward module 248 for transmission (e.g. , to a destination) .
[0039] As also shown , policies 242 are received and stored
in management plane 232. Policies can include one or more
rules , which can be specified using domain and / or host /
server names , and rules can apply one or more signatures or
other matching criteria or heuristics , such as for security

US 2022/0272109 A1 Aug. 25 , 2022
5

a

policy enforcement for subscriber / IP flows based on various
extracted parameters / information from monitored session
traffic flows . As also shown in FIG . 2B , an interface (I / F)
communicator 250 is provided for management communi
cations (e.g. , via (REST) APIs , messages , or network pro
tocol communications or other communication mechanisms .
[0040] FIG . 2C illustrates an embodiment of a data appli
ance . As previously explained , in various embodiments , data
appliance 102 includes a management plane 232 and a data
plane 234. The management plane is responsible for man
aging user interactions , such as by providing one or more
user interfaces for configuring policies (242) , reporting
problems , and viewing log data . The data plane is respon
sible for managing data , such as by performing packet
processing (e.g. , to extract URLs) and session handling . In
various embodiments , a scheduler is responsible for man
aging the scheduling of requests (e.g. , as presented by data
plane 234 to management plane 232 , or as presented by
management plane 232 to a remote security platform 122) .

URL Filtering

[0041] As mentioned above , one task performed by data
appliance 102 is URL filtering . Specified in data appliance
102 is a set of policies 242 , some of which govern the types
of websites that ACME employees may access , and under
what conditions . As one example , included in data appliance
102 is a policy that permits employees to access news
related websites . Another policy included in data appliance
102 prohibits , at all times , employees from accessing por
nographic websites . Also included in data appliance 102 is
a database (262) of URLs and associated categories (e.g. ,
with bing.com being categorized as a “ search engine ” and
with gmail.com being categorized as " web mail ”) . Other
information can also be associated with the URLs in data
base 262 instead of or in addition to category information ,
and that other information can be used in conjunction with
policy enforcement .
[0042] In some embodiments , database 262 (or at least
some portions thereof) is provided by a third party , such as
through a subscription service . In such a scenario , it is
possible that instead of the URLs being directly stored in
database 262 , a transformation is applied to the URLs prior
to storage . As one example , MD5 hashes of URLs can be
stored in database 262 , rather than the URLs themselves .
The URLs stored in database 262 (or transformations
thereof) represent the top n URLs for which access is most
likely to be sought by users of client devices , such as client
device 104 , where n can be configured based on the com
puting and other resources available to data appliance 102 .
As one example , an embodiment of database 262 includes
20 million URLs and is stored in storage 210. Database 262
can be periodically refreshed / maintained , such as by secu
rity platform 122 transmitting daily (or another timescale)
database updates to data appliance 102 (e.g. , as a content
package) .
[0043] In various embodiments , data appliance 102
includes various caches (e.g. , 264-272) , loaded into RAM
204. In some embodiments , all or some of caches 264-272
are omitted from data appliance 102 and the processing
described herein is adapted accordingly . In other embodi
ments , additional caches are included in data appliance 102 ,
as applicable . Additional details regarding components
shown in FIG . 2C are provided below .

[0044] When a user of client device 106 (an employee
referred to hereinafter as “ Bob ”) attempts to engage in
activities such as web surfing , communications from and to
client device 106 pass through data appliance 102. As one
example , suppose Bob has launched a web browser appli
cation on client device 106 and would like to visit an
arbitrary web page . Data appliance 102 is configured to
evaluate the URL of the site Bob would like to visit (e.g. ,
URL 274) and determine whether access should be permit
ted .
[0045] Suppose Bob would like to visit site 154 , the
website of a national newspaper , and enters that URL into
his browser (“ www.examplenews.com ”) . In some embodi
ments , the URL (274) is evaluated by data appliance 102 as
follows . In the first stage of the evaluation , the data plane
(234) consults cache 264 for the presence of URL 274 (the
results of which are indicative of whether data appliance 102
has previously received a request to access site 154 within
cache resource constraints) . If the URL is present in cache
264 , the associated category that is also stored in cache 264
is used to enforce any applicable policies 242 (e.g. , allowing
Bob access to site 154) . If the URL is not present in cache
264 , a temporary entry is inserted into cache 264 indicating
that the URL is being resolved . As one example , a URL
being resolved is assigned a temporary category of “ UNRE
SOLVED . " Additional requests received by data appliance
102 for access to site 154 (e.g. , received from another user
such as “ Charlie , " a user of client device 104) will be queued
pending the resolution . In various embodiments , a timeout
condition is placed on UNRESOLVED entries included in
cache 264 , such that if the entry is not updated within a
specified period of time , the entry is removed .
[0046] Assuming URL 274 remains unresolved , data
plane 234 sends a request to management plane 232 for an
evaluation of URL 274. URL 274 is transformed as appli
cable (e.g. , an MD5 hash of URL 274 is computed) . For the
remainder of the discussion of this example , no distinction
will be made between a URL and the MD5 (or other
transformation) of a URL , to aid in clarity . It is to be
assumed that if database 262 stores MD5 hashes , the queries
performed against (and corresponding operations) it will be
performed using MD5 (or other applicable) transformations
of URLs .
[0047] In some embodiments , cache 266 is evaluated for
the presence of URL 274 (indicative of whether database
262 was previously queried for URL 274 within cache
resource constraints) . Suppose URL 274 is not present in
cache 266. A query of database 262 is performed using URL
274. If it is assumed that URL 274 is present in database 262 ,
the corresponding category NEWS is returned and ulti
mately provided to data plane 234 , which will update the
entry in cache 264 by changing the UNRESOLVED cat
egory to NEWS . The category will be used by the firewall
to enforce any applicable rules . In this case , for example ,
Bob's attempt to access URL 274 with his browser would be
permitted (his session would not be terminated by data
appliance 102) , because his request is associated with an
attempt to access a NEWS site , which is a permissible use .
Cache 266 is also updated to include the returned category
and URL 274 (i.e. , its MD5 hash) .
[0048] Now suppose that a query of database 262 for URL
274 fails . The next phase of evaluation performed by the
management plane is to consult cache 268 to see if URL 274
is present therein . Cache 268 is associated with queries

US 2022/0272109 A1 Aug. 25 , 2022
6

2

performed by data appliance 102 against a set of one or more
remote URL classification services . As with the previous
phases , if URL 274 is present in cache 268 , the correspond
ing category (e.g. , “ NEWS ”) will be returned as a result and
can be used by the firewall in policy enforcement (and
included in cache 264) . If URL 274 is also absent in cache
268 , one or more remote URL classification services , such
as URL classification service 276 , are queried .
[0049] In some embodiments , the URL classification ser
vice is an Amazon Cloud URL query server , which queries
URL category information using a Trie structure lookup . In
some embodiments , the URL classification service is made
available by the provider of the contents of database 262 ,
and contains URL information that supplements the infor
mation included in database 262 (e.g. , by including many
millions of additional URLs and corresponding categories) .
As one example , URL classification service 276 can be
provided by security platform 122 (e.g. , as component 276) .
AURL classification service can also be under the control of
the owner of data appliance 102 or any other appropriate
party . Further , a set of multiple URL classification services
can be queried by data appliance 102 , whether in parallel , in
sequence (e.g. , if a first queried URL classification service
has no results , data appliance 102 contacts a different URL
classification service) , selectively , etc.
[0050] In various embodiments , URL classification ser
vice 276 is implemented using commodity server - class
hardware . URL classification service 276 can also be con
structed using a scalable , elastic architecture , and may
comprise several distributed components , including compo
nents provided by one or more third parties (e.g. , using
Amazon Web Services , Microsoft Azure , and / or Google
Cloud Platform) . Further , when URL classification service
276 is referred to as performing a task , such as storing data
or processing data , it is to be understood that a sub
component or multiple sub - components of URL classifica
tion service 276 (whether individually or in cooperation with
third party components) may cooperate to perform that task .
Functionality described herein as being provided by URL
classification service 276 can be implemented in a variety of
ways , including as a set of one or more scripts (e.g. , written
in Java , python , etc. , as applicable) .
[0051] URL classification service 276 uses a set of crawl
ers 280 to crawl sites (e.g. , sites 150-156) , extract metadata /
content , and store information associated with the crawled
sites in database 282. Examples of tools that can be used to
crawl / extract content from sites include PageDump (Web
Kit) , HtmlUnit , and jsoup . Database 282 is , in various
embodiments , implemented using MongoDB . Example
tables that can be included in database 282 are a crawl queue
(of sites to be crawled) , a crawl log (a history of sites
crawled) , a classification result (e.g. , a to - publish category ,
invalid site , or no category) , and a crawl content report (e.g. ,
a summary of crawled sites , language , and number of pages
crawled) . The information extracted for a site (e.g. , title ,
description , body text , keywords , inlinks , outlinks , lan
guage , etc.) is used (e.g. , by classifier 284) to generate a
feature vector (or set of feature vectors , as applicable) . One
example of a feature is whether or not any of the outlinks of
a site lead to sites known to be classified as ADULT sites .
Other example features variously include features related to
body text , features related to metadata , features related to
incoming links , and features related to the URL itself .

[0052] In various embodiments , different features
included in a feature vector are used in conjunction with
different types of machine learning approaches incorporated
into a classification model , such as model 286. Examples of
such machine learning approaches include Naive Bayes ,
support vector machines , random forest , logistic regression ,
and gradient descent boosting trees . Classifier 284 uses a
model , such as model 286 , to classify a given site (e.g. , as
NEWS , ADULT , etc.) based on its associated feature vector .
In various embodiments , a model such as model 286 is
trained using a training set of manually labeled websites . As
one example , sites such as netflix.com , hulu.com , and you
tube.com (well known to provide video streaming services)
can be included in the training set (labeled as “ video
streaming ”) . Categorizations determined using model 286
are stored in database 282. The contents of database 282 can
be used for a variety of purposes , including generating
database 262 , and responding to queries .
[0053] In the event that URL 274 is also absent from URL
classification service 276 (and any additional URL services
available to data appliance 102 as applicable) , a category of
UNKNOWN will be returned and appropriate policies
applied , based on the category , such as by blocking access
to URL 274. Cache 264 can also be updated by switching the
temporary category of UNRESOLVED to UNKNOWN . As
with cache 266 , cache 268 is updated based on results
returned by URL classification service 276. In some embodi
ments , URLs with UNKNOWN categorization have a tim
eout , thus allowing for resolution of the categorization
during a subsequent request .

Security Platform
[0054] Returning to FIG . 1 , in various embodiments ,
security platform 122 is configured to provide a variety of
services (including to data appliance 102) , including ana
lyzing samples (e.g. , of documents , applications , etc.) for
maliciousness , categorizing applications , categorizing
domains / URLs / URIs , etc.
[0055] Suppose a malicious individual (using system 120)
has created malware 158. The malicious individual hopes
that a client device , such as client device 104 , will execute
a copy of malware 158 , compromising the client device , and
causing the client device to become a bot in a botnet . The
compromised client device can then be instructed to perform
tasks (e.g. , cryptocurrency mining , or participating in denial
of service attacks) and to report information to an external
entity , such as command and control (C & C) server 164 , as
well as to receive instructions from C & C server 164 , as
applicable .
[0056] Suppose data appliance 102 has intercepted an
email sent (e.g. , by system 120) to client device 104 to which
a copy of malware 158 has been attached . As an alternate ,
but similar scenario , data appliance 102 could intercept an
attempted download by client device 104 of malware 158
(e.g. , from a website) . In either scenario , data appliance 102
determines whether a signature for the file (e.g. , the email
attachment or website download of malware 158) is present
on data appliance 102. A signature , if present , can indicate
that a file is known to be safe (e.g. , is whitelisted) , and can
also indicate that the file is known to be malicious (e.g. , is
blacklisted) .
[0057] If a signature for malware 158 (e.g. , an MD5 hash
of malware 158) is included in the set of signatures , data
appliance 102 can prevent the transmission of malware 158

a

a

US 2022/0272109 A1 Aug. 25 , 2022
7

to client device 104 accordingly (e.g. , by detecting that an
MD5 hash of the email attachment sent to client device 104
matches the MD5 hash of malware 158) . Security platform
122 can also provide to data appliance 102 a list of known
malicious domains and / or IP addresses , allowing data appli
ance 102 to block traffic between enterprise network 140 and
C & C server 164 (e.g. , where C & C server 164 is known to
be malicious) . The list of malicious domains (and / or IP
addresses) can also help data appliance 102 determine when
one of its nodes has been compromised . For example , if
client device 104 attempts to contact C & C server 164 , such
attempt is a strong indicator that client 104 has been com
promised by malware (and remedial actions should be taken
accordingly , such as quarantining client device 104 from
communicating with other nodes within enterprise network
140) .
[0058] If no signature for an attachment is found , in
various embodiments , data appliance 102 is configured to
provide the file for static / dynamic analysis , to determine
whether it is malicious and / or to otherwise classify it . As one
example , data appliance 102 can send a copy of malware
158 to security platform 122 for analysis . Security platform
122 can also (or instead) obtain copies of applications for
evaluation from sources other than data appliance 102 (e.g. ,
data appliances 136 and / or 148) , and / or from other types of
sources , such as a software distribution platform (also
referred to herein as an “ app store ”) 160. Example embodi
ments of app store 160 include Google Play , iOS App Store ,
Windows Store , and Amazon Appstore . In various embodi
ments , analysis of malware 158 is performed at least par
tially on premise (e.g. , within enterprise network 140) . And ,
analysis described herein as being performed by security
platform 122 can also be performed , at least partially , by a
malware analysis module included in data appliance 102 .
[0059] Security platform 122 stores copies of received
samples in storage 142 and analysis is commenced (or
scheduled , as applicable) . One example of storage 142 is an
Apache Hadoop Cluster (HDFS) . Results of analysis (and
additional information pertaining to the applications) are
stored in database 146. In the event an application is
determined to be malicious , data appliance 102 can be
configured to automatically block the file download based
on the analysis result . Further , a signature can be generated
for the malware and distributed (e.g. , to other data appli
ances such as data appliances 136 and 148) to automatically
block future file transfer requests to download the file
determined to be malicious .
[0060] In various embodiments , security platform 122
comprises one or more dedicated commercially available
hardware servers (e.g. , having multi - core processor (s) ,
16G + of RAM , gigabit network interface adaptor (s) , and
hard drive (s)) running typical server - class operating systems
(e.g. , Linux) . Security platform 122 can be implemented
across a scalable infrastructure comprising multiple such
servers , solid state drives , and / or other applicable high
performance hardware . Security platform 122 can comprise
several distributed components , including components pro
vided by one or more third parties . For example , portions or
all of security platform 122 can be implemented using the
Amazon Elastic Compute Cloud (EC2) and / or Amazon
Simple Storage Service (S3) . Further , as with data appliance
102 , whenever security platform 122 is referred to as per
forming a task , such as storing data or processing data , it is
to be understood that a sub - component or multiple sub

components of security platform 122 (whether individually
or in cooperation with third party components) may coop
erate to perform that task . As one example , security platform
122 can optionally perform static / dynamic analysis in coop
eration with one or more virtual machine (VM) servers , such
as VM server 124 .

[0061] An example of a virtual machine server is a physi
cal machine comprising commercially available server - class
hardware (e.g. , a multi - core processor , 8+ Gigabytes of
RAM , and one or more Gigabit network interface adapters)
that runs commercially available virtualization software ,
such as VMware ESXi , Citrix XenServer , or Microsoft
Hyper - V . In some embodiments , the virtual machine server
is omitted . Further , a virtual machine server may be under
the control of the same entity that administers security
platform 122 , but may also be provided by a third party . As
one example , the virtual machine server can rely on EC2 ,
with the remainder portions of security platform 122 pro
vided by dedicated hardware owned by and under the
control of the operator of security platform 122. VM server
124 is configured to provide one or more virtual machines
126-128 for emulating client devices . The virtual machines
can execute a variety of operating systems and / or versions
thereof . Observed behaviors resulting from executing appli
cations in the virtual machines are logged and analyzed (e.g. ,
for indications that the application is malicious) . In some
embodiments , log analysis is performed by the VM server
(e.g. , VM server 124) . In other embodiments , analysis is
performed at least in part by other components of security
platform 122 , such as a coordinator 144 .
[0062] In various embodiments , security platform 122
makes available the results of its analysis of samples via a
list of signatures (and / or other identifiers) to data appliance
102 (and / or to MDM server 162) as part of a subscription .
For example , security platform 122 can periodically send a
content package that identifies malware apps (e.g. , daily ,
hourly , or some other interval , and / or based on an event
configured by one or more policies) . An example content
package includes a listing of identified malware apps , with
information such as a package name , a hash value for
uniquely identifying the app , and a malware name (and / or
malware family name) for each identified malware app . The
subscription can cover the analysis of just those files inter
cepted by data appliance 102 and sent to security platform
122 by data appliance 102 , and can also cover signatures of
all malware known to sec security platform 122 (or subsets
thereof , such as just mobile malware but not other forms of
malware (e.g. , PDF malware)) .
[0063] In various embodiments , security platform 122 is
configured to provide security services to a variety of
entities in addition to (or , as applicable , instead of) an
operator of data appliance 102. For example , other enter
prises , having their own respective enterprise networks 134
and 138 , and their own respective data appliances 136 and
148 , can contract with the operator of security platform 122 .
Other types of entities can also make use of the services of
security platform 122. For example , an Internet Service
Provider (ISP) providing Internet service to client device
110 can contract with security platform 122 to analyze
applications which client device 110 attempts to download .
As another example , the owner of client device 110 can
install software 114 on client device 110 which communi
cates with security platform 122 (e.g. , to receive content

US 2022/0272109 A1 Aug. 25 , 2022
8

packages from security platform 122 and transmit applica
tions to security platform 122 for analysis) .

III . Automated Extraction and Classification of
Malicious Indicators

a

[0064] Detecting online criminal activity can be challeng
ing for a variety of reasons , including the diversity of
malicious activities and the scale of the problem , where
billions of potential indicators of compromise (IOCs) such
as Internet Protocol (IP) addresses , domain names , Uniform
Resource Locators (URLs) , and file hashes (e.g. , SHA256 or
MD5) may exist and be usable to identify and stop malicious
activity . To help address the seemingly insurmountable task
of identifying IOCs , security researchers often share their
discoveries with one another . Unfortunately , such informa
tion sharing among researchers is not standardized or cen
tralized , posing two main challenges to researchers . The first
challenge is how to locate sources of publicly shared poten
tial IOCs . The second challenge is that , without a universal
definition of IOC , malicious IOCs may be intermingled with
benign indicators .
[0065] To address these and other problems , in various
embodiments , security platform 122 includes an automated
IOC extraction system 300 that can collect and classify IOCs
automatically . As will be described in more detail below ,
IOC extraction system 300 curates existing and discovers
new IOC sources , crawls those sources and extracts potential
IOCs , collects IOC intelligence , and classifies IOCs . As used
herein , a “ true IOC , " " confirmed IOC , " " malicious IOC , "
and / or “ actionable IOC ” is an IOC that can be used to block
malicious / other undesirable activities . A “ candidate IOC ” or
“ potential IOC ” is one that has not yet been determined to
be usable to stop malicious / other undesirable activities . A
" false IOC ” is a candidate IOC that is subsequently deter
mined to be benign (or not otherwise usable to stop mali
cious / other undesirable activities) .

4

text) from which a given candidate IOC is extracted is
referred to as the IOC's " context , ” which can be used to
locate interesting computer security terms related to the
IOC . Additional information related to the candidate IOC is
also collected , such as blocklists that the IOC appeared in
and DNS records associated with the IOC , and can be used
to assist in determining whether the candidate IOC is an
indicator of abuse by itself in various embodiments , system
300 leverages both a heuristic ruleset based classifier , and a
machine learning classifier to decide whether a potential
IOC is actionable (i.e. , can be used for blocklisting by itself) .
Both classifiers rely on features based on the IOC's context ,
attributes of the source , and additional intelligence gathered
about the IOC (described in more detail below) . The output
of system 300 can be used in a variety of ways (e.g. ,
providing a list of IOCs to URL classification service 276 ,
to data appliance 102 , etc.) .
[0068] FIG . 3 illustrates an embodiment of an automated
IOC extraction system . System 300 is modular , with each
component working separately and modules depending on
each other through data stored in central database 302 (or , as
applicable , via RAM) . One example of database 302 is a
relational database (e.g. , MySQL) for data persistence . Data
base 302 can be normalized to make sure that the same
content is not stored multiple times . In various embodi
ments , for each source (e.g. , blog website , Twitter account ,
etc.) , the crawling state (URLs visited and URLs to visit) is
stored in a JSON format (e.g. , as a byte array or other
appropriate way) .
[0069] Main coordinator 304 orchestrates when and how
each module is run , and multiple instances of a particular
module (e.g. , web crawler 308) may be run simultaneously .
Components of system 300 can be implemented in a variety
of ways (e.g. , as a set of scripts authored in an appropriate
programming / scripting language such as Java or python and
using applicable libraries such as the NLTK python library
for natural language processing , the Requests python library
for scraping websites , and scikit - learn for machine learning) .
[0070] Target selector 306 is configured to select and
pric tize sources (e.g. , URLs , RSS feeds , and Twitter
accounts) to be crawled . It caps the number of resources that
crawlers visit in a certain time frame for a specific source .
Web crawler 308 crawls targets selected by target selector
306. It collects all online documents found visiting a par
ticular URL . Examples of documents include text , HTML ,
PDF , DOCX , XLSX , pictures , and other types of files . Web
crawler 308 also visits URLs that may not be part of a
source . As one example , IOCs are frequently posted to the
site www.pastebin.com , which web crawler 308 may also
visit .
[0071] Text / IOC extractor 310 comprises multiple parts .
First , it extracts text from files collected by web crawler 308 .
It can handle different file formats (e.g. , HTML , PDF , etc.) .
Second , it leverages natural language processing (NLP) to
retrieve sentences from text . Third , it reverse defangs and
retrieves candidate IOCs from the sentences using regular
expressions , and fourth , it validates whether the candidate
IOCs are valid domain names , IP addresses , email addresses ,
etc. Browsers and other web and email clients often make
URLs , IP addresses , email addresses , and / or domain names
clickable . IOCs are often intentionally made unclickable to
stop readers from inadvertently visiting dangerous
resources , a process referred to as “ defanging . ” An example
of a defanged URL is “ hXXPs [:] // malicious.url [.] com / in

A. Example Architecture
[0066] Automated IOC extraction system 300 supports
both manual and automated addition of various IOC sources ,
including websites , blogs , RSS feeds , Twitter posts , and / or
threat intelligence sharing platforms . As one example , sys
tem 300 can identify new sources by leveraging TF - IDF
based scoring to decide if a source is a publisher of mali
cious IOCs . An initial seed of sources can be used to build
a term frequency model of the natural language present in
known computer security related IOC sources and to build
an inverse document frequency representing documents in
general . In the example of Twitter , a search API can be used
to find potentially useful sources which can then be evalu
ated using the average TF - IDF score of feeds to decide
whether a given feed should be added as a source .
[0067] Each type of source (e.g. , blog or Twitter) is
crawled with an applicable stateful crawler that maintains a
visit history for each source individually and stores collected
content in a raw format for processing . When the web
crawler encounters a link , it can be added to a crawl queue .
System 300 extracts user - readable text from the collected
raw content (e.g. , HTML , PDF , DOCX , etc.) . Using natural
language processing , the text is converted into a list of
sentences . Candidate IOCs (URLs , domain names , IP
addresses , email address , file hashes , etc.) are extracted from
the list of sentences . The sentence (or other surrounding

a

US 2022/0272109 A1 Aug. 25 , 2022
9

a

a

stall.exe . ” When a defanged IOC is encountered , system 300
can reverse the defanging process (“ reverse defanging ”) to
obtain the original IOC .
[0072] DNS client module 312 queries DNS to find
resource records (e.g. , IP address and name servers) asso
ciated with candidate IOCs . These resource records can be
leveraged to identify if a candidate IOC is truly an IOC .
Intelligence gathering module 314 queries online resources
about candidate IOCs . As one example , this module queries
blocklists to find out whether a candidate IOC is included on
such lists . The information collected can be used to deter
mine whether a candidate IOC is a true IOC .
[0073] Heuristic classifier 316 includes a set of rules to
decide whether a candidate IOC should be deemed a true
IOC or not . Suppose a candidate IOC is classified as a true
IOC . In that case , it will be included in the different services
(e.g. , offered by security platform 122) to block malicious
activities (e.g. , URL filtering and DNS security services) . If
a candidate IOC is not classified as a true IOC , then it can
be sent to other maliciousness detectors (e.g. , malware /
phishing detectors) . The heuristic classifier leverages a sub
set of the features that machine learning classifier 318 uses .
For example , it leverages knowledge of whether an IOC was
defanged , was included in third - party blocklists (e.g. , as can
be determined by querying VirusTotal or other appropriate
source) , what DNS resource records the DNS client col
lected , the type of the IOC (e.g. , URL , domain , IP) , and
whether the context included certain words indicating that
the source authors thought this IOC to be malicious . A
candidate IOC that appears on multiple blocklists and is
defanged is likely to be malicious . Therefore , an example
rule could be if a candidate IOC is defanged , and it appears
on more than three blocklists , then it is a true IOC .
[0074] An advantage of a machine learning classification
is that it can automatically learn a large number of rules
based on a large set of features that would be untenable for
humans . A disadvantage of machine learning is that it
depends on the availability of labeled data . A heuristic
classifier can be used to hardcode important rules based on
expert knowledge . A variety of techniques can be used to
implement machine learning classifier 318. As one example ,
a random forest model can be used .
[0075] Machine learning classifier 318 is involved in three
main tasks . The first task is feature extraction (e.g. , how
many sources mentioned the IOC , the age of the IOC ,
whether the IOC was defanged) , for example , from the
context of IOCs , the candidate IOCs themselves , and any
external intelligence collected .
[0076] In various embodiments , features used by machine
learning classifier 318 can be grouped into the following
categories : features specific to the IOC string , the sources
the IOC was mentioned in , the context sentences , the context
contents (e.g. , blog posts or tweets) , and a set of external
features .
[0077] IOC Textual Features : The goal of textual features
is to understand how a candidate IOC looks . Often , these
features are indicative of malice themselves . For example ,
complex domains and URLs might be constructed to trick
users . These features are derived directly from the IOC
tring . Examples of such features include :

[0078] Character length of the IOC
[0079] Type of the IOC (e.g. , domain , IP , URL , email

address , hash) integer encoded
[0080] Number of domain levels

[0081] Number of URL path levels
[0082] Length of the URL query field
[0083] Was it extracted as part of a longer IOC (e.g. ,

domain / IP part from URL)
[0084] Source Features : Source features represent how the
security community at large thinks about an IOC . The more
sources that mention a defanged IOC , the more likely it is
that the IOC is malicious . Examples of such features
include :

[0085] The number of times the IOC was mentioned
defanged across all sources

[0086] The unique number of techniques used to defang
the IOC across all sources

[0087] Methods used to defang the IOC across all
sources , one - hot encoded

[0088] The number of source types an IOC was men
tioned in (e.g. , blog , Twitter , RSS)

[0089] Source Distribution related features : These fea
tures are calculated four times , once for the source ,
once for the affiliation . For both , it is also calculated
only when the IOC was defanged :
[0090] The maximum number of times the IOC was
mentioned in one source / affiliation

[0091] The total number of times the IOC was men
tioned in sources / affiliations

[0092] Max in one source / affiliation divided by total
mentions to see if an IOC is mentioned in one
source / affiliation much more than in others

[0093] The total number of sources / affiliations the
IOC was mentioned in

[0094] Sentence features : Some sentence features also
represent how the security community , in general , thinks
about an IOC . Other sentence features represent whether a
given sentence likely talks about a real IOC . For an IOC ,
each context sentence (and contents) can be considered , that
is , all sentences and contents) where the IOC was men
tioned . For example , if a URL IOC is found in a sentence
with the word “ phishing , ” it might indicate that the URL is
a phishing URL . Similarly , if a sentence contains many
candidate IOCs , then it is more likely that this sentence is
about true IOCs . Examples of such features include :

[0095] One - hot encoding of computer , network , or
security - related keywords found in the context sen
tences . Examples of such words include : “ cookies , ”
" download , " " data , " “ malware , ” and “ C2 . ”

[0096] One - hot encoding of the token types found in the
sentences

[0097] Minimum , average , and maximum values of the
following features among context sentences :
[0098] Sentence length
[0099] Ratio of letters to all characters
[0100] Ratio of special terms
[0101] Ratio of IOCs
[0102] Number of ways IOCs were defanged
[0103] Number of IOCs
[0104] Number of defanged IOCs

[0105] Content features : Content features are similar to
sentence features , but they are calculated for entire posts (or
otherwise across a document) . For example , the average
number of IOCs present in context contents (instead of
context sentences) for a given IOC is calculated . Context
content features are calculated the same way as for context
sentences .

a

US 2022/0272109 A1 Aug. 25 , 2022
10

a
sources (e.g. , accounts of security researchers , security
companies , etc.) can be identified and included (e.g. , the
ones that are followed by the highest number of sources , are
followed by a threshold number of seed accounts , etc.) .
Unfortunately , aggressively including many sources can
lead to an ineffective system to collect IOCs over time . One
way to address this issue is to periodically run source
evaluation . If it is determined that a source did not recently
provide actionable IOCs , the source can be removed . The
source can be automatically added back to system 300 at a
later time (if applicable) through subsequent automatic
discovery .

a

B. Example Processing

[0106] External features : Features collected from external
sources , which might help decide if a candidate IOC is a true
IOC , can also be leveraged . As one example , the stable
Alexa rank of candidate IOCs can be used as popular
domains are not likely to be true IOCs . Alexa ranks domain
names based on popularity . Alexa ranks of domain names
can be collected and a determination can be made of whether
the domains maintain their ranks for a long time period as a
stable Alexa rank . The number of blocklists an IOC candi
date was included in can also be considered . DNS client
312's output indicates if a domain is non - existent (NX) ,
which would also make it likely that it is a true IOC . Finally ,
the age of domain names can be considered , as new domains
are more likely to be malicious .
[0107] A second task performed by machine learning
classifier 318 is model selection . This includes training a
classifier model (e.g. , random forest) on labeled data . An
example of labeled data is a list of candidate IOCs where it
is known whether they are true or false IOCs . The labeled
data can be split into three parts : training , development , and
validation sets . The training data can be used to help the
classifier learn the difference between true and false IOCs .
However , there are many hyperparameters that the classifier
cannot learn (e.g. , in the case of random forest , the maxi
mum allowed depth of the trees or the number of features
that can be used for each tree) . The development dataset can
be used to see how different settings of hyperparameters
affect the classifier's performance . One approach is to con
sider how good a classifier's recall is for a predefined
precision (e.g. , 0.99) . Recall is a measure of the percent of
true IOCs that the classifier can find (the number of true
positives divided by the number of true positives plus false
negatives) . A true positive is where a candidate IOC is
classified as a true IOC and was indeed a true IOC . A false
negative is where a candidate IOC is classified as a false IOC
but was in fact a true IOC . Precision is a measure of how
often the classifier correctly determines that a candidate IOC
is a true IOC (e.g. , the number of true positives divided by
the number of true positives plus false positives) . Precision
is important in limiting the number of false positives . A false
positive is where a candidate IOC is erroneously classified
as a true IOC when it was a false IOC . The validation set can
be used to make sure that the classifier did not overfit on the
training and development datasets and that it can be used in
practice with good performance . The final task is using a
selected model to classify new candidate IOCs as true or
false IOCs . True IOCs can then be included in the different
services offered by security platform 122 to block malicious
activities , as with heuristic classifier results .
[0108] In various embodiments , automated IOC extraction
system 300 also includes an automatic source discovery
module 320. It leverages a manually curated set of seed
sources 322 and online information to discover new sources
automatically . Source discovery module 320 achieves this in
two steps . First , sources that are related to security are
aggressively included . Second , sources that do not yield
valuable information are removed . Different techniques can
be leveraged for different kinds of sources . In the case of
blogs , for example , a search engine can be used to locate
security blogs , and then database 302 can be searched to
determine how often sources (starting with the seed) have
linked to these blogs . If multiple sources are linked to a
given blog , it can be included in the list of sources . In the
case of Twitter , user accounts that are followed by seed

[0109] FIG . 4 illustrates an embodiment of a process for
generating actionable indicators of compromise (e.g. , IOCs
that can be provided to a production security enforcement
system and used to prevent harm) . In various embodiments ,
process 400 is performed by security platform 122 , and in
particular by automated IOC extraction system 300. Process
400 begins at 402 when a set of potential sources for
indicators of compromise (IOCs) is received . As one
example , target selector 306 receives a set of potential
sources at 402. At 404 , one or more candidate IOCs is
extracted from at lest one of the potential sources . As one
example , web crawler 308 and text / IOC extractor 310 col
lectively extract a set of candidate IOCs at 404. At 406 , an
actionable IOC is automatically identified . As an example ,
such identification can be performed at 406 by heuristic
classifier 316 and / or machine learning classifier 318. Finally ,
at 408 , the actionable IOC is provided to a security enforce
ment service . As one example , an actionable IOC is pro
vided by automated IOC extraction system 300 to URL
classification service 276. As another example , an actionable
IOC is provided by automated IOC extraction system 300 to
data appliance 102 (e.g. , via a subscription service provided
by security platform 122) . Various remediation techniques
described above (e.g. , preventing client 104 from commu
nicating with a domain , quarantining client 106 if it is
determined that client 106 has communicated with the
domain , etc.) can be taken based on the IOC .

a

a

1. Blog Post Example
[0110) Suppose that one source included in seed sources
322 is a blog called “ Malware Busters . ” A file for the source
(a seed file) contains the name of the blog and a URL to the
main page of the blog : " www.malwarebusters.com . ” When
target selector 306 is called , it will load the seed file and save
the URL of the main page with the name of the blog to
database 302. Two lists are maintained for each source :
“ visited URLs ” and “ URLs to visit . ” Initially , the “ URLs to
visit ” will include a single link — to the main page (www .
malwarebusters.com) . And , initially , the “ visited URLs ” list
will be empty , and is maintained to make sure that the same
blog posts are not visited multiple times . The exception is
the main page of the blog , which is revisited periodically
(e.g. , every day) .
[0111] Next , multiple web crawlers 308 in parallel will
begin retrieving URLs from the “ URLs to visit ” list . In this
example , starting with www.malwarebusters.com , they will
download the main page of the blog and add all the URLs
referencing blog posts to the " URLs to visit ” list . They will
continue visiting these URLs until a daily cap is reached .

US 2022/0272109 A1 Aug. 25 , 2022
11

Suppose that one of the pages crawled is a post about a
phishing campaign that targets a bank , “ Rainbow Bank . ”
The page is located at http://malwarebusters.com/posts/rain
bowphishing.html . An example of a portion of user - visible
text from the page is shown in FIG . 5A . The corresponding
source code for the page excerpt is shown in FIG . 5B . When
web crawler 308 visits the page , it will first save the raw
HTML file with HTML , JavaScript , and CSS code . It will
also process the HTML file and retrieve links from it , such
as " https://pastebin.com/cWK298xx ” in two cases only : if
the URL is part of the blog site or the domain portion is in
a predefined list such as “ pastebin.com . ” The retrieved links
are then added to the “ URLs to visit ” list .

[0112] Text / IOC extractor 310 will start by extracting the
user - visible text as seen in FIG . 5A . Then , it will split the
text into sentences using NLP . While the crawlers save the
raw HTML files , this module will save the user - visible text
and the extracted sentences to database 302. Next , using
regular expressions , extractor 310 will search for defanging
and will reverse defang candidate IOCs , taking note of
where and what kind of defanging took place in the sen
tences . (In this example , “ ralnbowbank [.] com ” will be trans
formed to “ ralnbowbank.com ” .) After defanging , another set
of regular expressions is used to look for candidate IOCs and
extract them , noting their position in the sentence . Before
saving them to database 302 , a check is made to see if they
are valid domain names , URLS , IPs , and / or email addresses .
After this step , the output looks similar to the following
table :

ing at a specific document or user account which could be an
acceptable actionable IOC such as docs.google.com/
kj235kjsdf78235kasrfh) .
[0115] Suppose that in the case of rainbowbank.com ,
heuristic classifier 316 is unable to decide if it was a true or
a false IOC ; therefore , it will send it for further analysis
(e.g. , to machine learning classifier 318 and / or other detec
tors (e.g. , a phishing detector)) .
[0116] For machine learning classifier 318 , multiple kinds
of features will be extracted about rainbowbank.com . Some
example features include the ratio of IOCs to text in the
context sentences , the number of defanged IOCs , the num
ber of blogs mentioning and defanging the IOC , and the
number of IOCs in the entire blog post . As machine learning
classifier 318 finds that most defanged IOCs at malware
busters.com are true IOCs and that rainbowbank.com was
also mentioned on another site (tocatchaphisher.xyz) , it will
classify it to be a true IOC .

Defanging
Type

Is Related
Child Sentences IOC Type

none no

no
rainbowbank.com
ralnbowbank.com
rainbowbank.com
pastebin.com
https://pastebin.com/
CWKZ98xx

no

domain
domain
domain
domain
URL

[.]
[:]
none
none

sent3 , sent4
sents
sent5
sent9
sent9

yes
no

2. Twitter Example
[0117] In this example , suppose that the Twitter account of
a known security researcher , Alice (@ sec_alice123) , is
included as a source for automated IOC extraction system
300. Alice tweets the following message : “ We found some
very tricky ransomware hosted on compromised sites . I
attached a picture of related IOCs . They seem to be part of
a social engineering campaign . When users download them ,
kaboom ! Their files are encrypted . ” Included with the tweet
is an image containing the following defanged URLs :

[0118] hXXps [:] // antivirus.victim [.] site / download / me /
clean - your - pc.exe ? id = dr5241krodl and

[0119] hXXp [:] // virus - cleaner.victim2 [.] site / remove !
malware / removal.exe ? ref = m37x812la

[0120] The process of extracting the IOCs is similar to the
example as described above . However , this time the attached
picture needs to be separately downloaded so that the text
can be extracted using optical character recognition (OCR) .
In the case of these two URLs , machine learning classifier
318 might find that they are true IOCs since they are
defanged , the URLs are complex (they have several com
ponents and are relatively long) , and the text to IOC ratio is
high in the text extracted from the picture .
[0121] Although the foregoing embodiments have been
described in some detail for purposes of clarity of under
standing , the invention is not limited to the details provided .
There are many alternative ways of implementing the inven
tion . The disclosed embodiments are illustrative and not
restrictive .
What is claimed is :
1. A system , comprising :
a processor configured to :

receive a set of potential sources for Indicators of
Compromise (IOCs) ;

extract one or more candidate IOCs from at least one
source included in the set of potential sources ;

automatically identify an actionable IOC from the one
or more candidate IOCs ; and

provide the actionable IOC to a security enforcement
service ; and

a memory coupled to the processor and configured to
provide the processor with instructions .

2. The system of claim 1 wherein the processor is further
configured to identify a new potential source to add to the set
of potential sources .

[0113] Next , DNS client module 312 will query the IP
address and the name server record of the domains found .
Intelligence gathering module 314 will find that ralnbow
bank.com is present on four blocklists while rainbowbank .
com is not present in any blocklists . It will also find that both
domains are relatively new .
[0114] Heuristic classifier 316 will then process
didate IOCs . For example , heuristic classifier 316 will
classify ralnbowbank.com as a true IOC as it has appeared
on multiple blocklists , it was defanged , it appears with the
word “ typosquatting , ” and it is a domain name . Therefore ,
ralnbowbank.com will be included in security services to be
blocked when visited by users or connected to by machines .
Candidate IOCs rainbowbank.com , pastebin.com , and
https://pastebin.com/cWKZ98xx are in a whitelist . Thus ,
they will be deemed as false IOCs . Another example of a
domain that can be included in such a whitelist is " docs .
google.com . ” Many benign documents are reachable via
docs.google.com , as are some malicious documents . By
including “ docs.google.com ” in a whitelist , system 300 can
be prevented from inadvertently generating an actionable
IOC that would block all documents reachable via docs .
google.com (as opposed to a more fine - grained URL point

the can

a

US 2022/0272109 A1 Aug. 25 , 2022
12

3. The system of claim 1 wherein extracting the one or
more candidate IOCs includes is determining whether a
URL was defanged .

4. The system of claim 3 wherein providing the actionable
IOC includes reverse defanging the URL .

5. The system of claim 1 wherein extracting the one or
more candidate IOCs includes performing optical character
recognition on an image .

6. The system of claim 1 wherein the processor is con
figured to periodically crawl the set of potential sources .

7. The system of claim 1 wherein automatically identify
ing the actionable IOC includes analyzing the one or more
candidate IOCs using a rule - based classification .

8. The system of claim 1 wherein automatically identify
ing the actionable IOC includes analyzing the one or more
candidate IOCs using a machine learning - based classifica
tion .

9. The system of claim 1 wherein automatically identify
ing the actionable IOC includes excluding as a candidate
IOC a whitelisted domain .

10. The system of claim 9 wherein the domain is
whitelisted based at least in part on a popularity metric .

11. The system of claim 1 wherein at least one candidate
IOC comprises a domain .

12. The system of claim 1 wherein at least one candidate
IOC comprises a URL .

13. The system of claim 1 wherein at least one candidate
IOC comprises an IP address .

14. The system of claim 1 wherein at least one candidate
IOC comprises an email address .

15. The system of claim 1 wherein at least one candidate
IOC comprises a hash .

16. The system of claim 1 wherein at least one processor
is further configured to prune the set of potential sources .

17. The system of claim 1 wherein the processor is
configured to prune a source included in the set of potential
sources based at least in part on whether an actionable IOC
was previously obtained from the source .

18. A method , comprising :
receiving a set of potential sources for Indicators of

Compromise (IOCs) ;
is extracting one or more candidate IOCs from at least one

source included in the set of potential sources ;
automatically identifying an actionable IOC from the one

or more candidate IOCs ; and
providing the actionable IOC to a security enforcement

service .
19. A computer program product embodied in a non

transitory computer readable medium and comprising com
puter instructions for :

receiving a set of potential sources for Indicators of
Compromise (IOCs) ;

extracting one or more candidate IOCs from at least one
source included in the set of potential sources ;

automatically identifying an actionable IOC from the one
or more candidate IOCs ; and

providing the actionable IOC to a security enforcement
service .

