US 20240364742A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0364742 A1l

Szurdi et al. 43) Pub. Date: Oct. 31, 2024
(54) INLINE DETECTION OF DICTIONARY DGA (52) US. CL
DOMAIN NAMES WITH REDUCED COST CPCcc..... HO4L 63/20 (2013.01); HO4L 41/16
AND LATENCY (2013.01); HO4L 63/0236 (2013.01)
(71) Applicant: Palo Alto Networks, Inc., Santa Clara, (57) ABSTRACT
CA (US)
A service includes a trained model comprising a classifier
(72) Inventors: Janos Szurdi, Sunnyvale, CA (US); that predicts whether domain names are dictionary DGA
Daiping Liu, Sunnyvale, CA (US); generated. Using passive DNS data and/or a heuristic analy-
Tong Zhao, San Jose, CA (US); sis based on natural language processing of the domain
Tingxiang Zhu, Sunnyvale, CA (US); name, the service filters domain names that are not candidate
Linan Li, Mountain View, CA (US) (i.e., potential) dictionary DGA domain names out of the
detection pipeline. There domain names are thus classified
(21) Appl. No.: 18/309,105 without being fed into the model for more computationally
. expensive processing. Domain names that are not filtered
(22) Filed: Apr. 28, 2023 out are queued for input into an instance of the model and

classification by the model, with the queued domain names

Publication Classification processed in small batches and load balanced across model

(51) Int. CL instances. Predicted domain name classes output by the
HO4L 9/40 (2006.01) model are cached for subsequent cache reads to avoid
HO4L 41/16 (2006.01) multiple runs of the model for one domain name.

4 DICTIONARY DGA DOMAIN NAME DETECTION SERVICE 102 A

DICTIONARY DOMAIN GENERATION ALGORITHM (DGA) DOMAIN NAME
DETECTION MODEL PIPELINE 103

DETECTION TRAINED DICTIONARY
D%mﬁgéﬂﬁyE MODEL DGA DOMAIN NAME
101 INTERFACE 115 | | DETECTION MODEL 117
A Y

. 1 125 | 1 125 | J

CLASSIFICATION @ CLASSIFICATION

STAGE A STAGE B
/ login-streaming.net \

\ DICTIONARY DGA
NON-DICTIONARY DGA

DNS
REQUEST
123

DNS
RESPONSE
19

i
. T — INTERNET 111 o
< FIREWALL | FTT 1 > =
/TR, RESPONSE 1 —
113 109
e DNS SERVER

CLIENT 107

US 2024/0364742 Al

Oct. 31, 2024 Sheet 1 of 8

Patent Application Publication

G0l
d3AH3S SNA

<

611
ISNOJS3IY
SNd

TIT LANY3LNI

l 'Old

ISNOJS3Y
T1VMIAIA

Z0T LN3INO

1

vOad AYVNOILOIA-NON
vOa AYVYNOILDIAN\

i

(42
1S3Nd3d

SNd
X

N\
\ 18U -Buiweals-uIBoj \

\
g 39V1S V JOV1S
NOILYDIISSY1D 57T NOILYDI4ISSVY10
AU} SSV10 A”Ul
wll _ v —
—— T m: N
4 1 N\

Z1T 13a0W NOILO313a
JNVN NIVNOA vOQa
AYVNOILOIA A3NIVYL

o MMM%W,_E.Z_ 101 ¥3Ld
NOILLD313a JNVN NIVINOA

€01 INITAdId 13AON NOILOFL3A
\JNVN NIVNOQA (VOQ) WHLIHO9TV NOILYHANID NIVINOd AdVNOILOIA /

\.

201 IDIAYAS NOILOILIA FWVN NIVINOA VOA AYVYNOILLOIA Y,

US 2024/0364742 Al

Oct. 31, 2024 Sheet 2 of 8

Patent Application Publication

/s

¢ 9l
NOIY3ALIYD SNIVINOQ
ENINEE SINVN
ANIVA 3¥NLY3S 100d d31s3no3ay
SoVNONYT TvanLyN | ZOYNONYT IVHNLYN NIVINOQ NOIN3g A LLNANDINA
\ /
Y \
- \ 7
(— N /)
702 SOILSI¥N3H 502
dl FINVYN NIVINOQd SINVYN NIVINOQ
vOd AYVYNOILOIA-NON aaMoT11V
voda n)
AJ\ bynsh —
YVNOILDIA-NON $0Z MOSS3004d N jourbaIsbese
g JOVNONYT VN LYN — 9
€Le — 10Z 431714 a3svd Lic

_ €0¢ d3L114IVOIX3T

_ "SNA JAISSVd

TO0F Y3174 ANVN NIVINOQ

US 2024/0364742 Al

Oct. 31, 2024 Sheet 3 of 8

Patent Application Publication

NiLE

d3NIVHL

oIt
13A0W
A3aNIvyL

O\.omm

a1
T4A0N

¢ Old

13U°934)-|| 8}

wiod auizegew
yeAey awodam

waos'uolldijjje

L LLE

-}s988ns 8uipuad

\
\

i
!

LLE

\ QaNIvyl /)

mmomm

ViiL
T3A0N

CEN WA

<momm‘

)

G0t

==l ||

d30NVIVE
avo

€0¢

VId3.LI4O ONIHD.LVE

-~

T0E YIAOVNVYIN ONIHO LYY 1

S 3OV4Y3LNI 13a0N NOILD3L3a

1€ SINVN
Y, NIYINOQ

60¢

a3aidiISSYT1ONN

Patent Application Publication Oct. 31, 2024 Sheet 4 of 8 US 2024/0364742 A1

FILTER NON-CANDIDATE DICTIONARY DGA DOMAIN
NAMES OUT OF DETECTION MODEL PIPELINE

|

4014 OBTAIN DOMAIN NAME INDICATED IN A REQUEST

v

SEARCH ALLOWED/BENIGN DOMAIN
NAMES BASED ON THE DOMAIN NAME

403

DOMAIN NAME CAN BE
CLASSIFIED AS BENIGN/
NON-DICTIONARY DGA?

405
YES

407 NO
5 ¥
ANALYZE DOMAIN NAME WITH NATURAL LANGUAGE
PROCESSING TO DETERMINE NATURAL LANGUAGE
FEATURES OF THE DOMAIN NAME AND EVALUATE
THE FEATURES BASED ON HEURISTICS FOR
IDENTIFYING NON-DICTIONARY DGA DOMAIN NAMES

411

v 9

FILTER DOMAIN
YES -» NAME OUT OF THE
MODEL PIPELINE

DOMAIN NAME NOT A
CANDIDATE DICTIONARY
DGA DOMAIN NAME BASED
ON HEURISTICS?

409

NO

v

PASS DOMAIN NAME TO TRAINED

A3 MODEL FOR CLASSIFICATION

END

FIG. 4

Patent Application Publication Oct. 31, 2024 Sheet 5 of 8 US 2024/0364742 A1

ANALYZE DOMAIN NAME WITH NATURAL LANGUAGE
PROCESSING (NLP) TO DETERMINE CANDIDACY FOR
DETECTION AS A DICTIONARY DGA DOMAIN NAME
BASED ON NATURAL LANGUAGE FEATURES

——

501 L) PARSE DOMAIN NAME '

TSR,

ANALYZE DOMAIN NAME TO DETERMINE
IF DOMAIN NAME IS A RANDOM STRING

503

DOMAIN NAME IS A
RANDOM STRING?

505 YES

NO

4
ANALYZE DOMAIN NAME TO DETERMINE
WORD COUNT AND/OR WORD LENGTH(S)

507 4

511

v 9

BASED CRITERIA FOR
509 CANDIDATE DICTIONARY >-NO D'l'\g'lgmi{‘(‘%‘\&
DGA DOMAIN NAMES

SATISFIED?

YES
v

INDICATE DOMAIN NAME

S13Y " CLASS IS UNKNOWN

END

FIG. 5

Patent Application Publication Oct. 31, 2024 Sheet 6 of 8 US 2024/0364742 A1

REDUCED-COST CLASSIFICATION OF DOMAIN
NAMES AS DICTIONARY DGA OR NON-DICTIONARY
DGA WITH TRAINED MODEL

601 ,.H QUEUE DOMAIN NAME(S) THAT WAS NOT |
FILTERED OUT OF MODEL PIPELINE

6034 DETERMINE BATCHING CRITERION SATISFIED

I

SELECT PROCESSOR INSTANCE TO
6051 {PROCESS THE BATCH OF DOMAIN NAMES
BASED ON LOAD BALANCING ALGORITHM

'

PASS THE BATCH OF DOMAIN NAMES TO THE
607 ULJSELECTED PROCESSOR INSTANCE THAT EXECUTES
CORRESPONDING TRAINED MODEL INSTANCE

y

OBTAIN OUTPUT(S) FROM MODEL
6094 INDICATING CLASSES PREDICTED
FOR DOMAIN NAMES OF THE BATCH

'

UPDATE DOMAIN NAME CACHE WITH
611 THE DOMAIN NAME(S) AND THE
PREDICTED CLASS(ES)

END

FIG. 6

US 2024/0364742 Al

Oct. 31,2024 Sheet 7 of 8

Patent Application Publication

VARSI E

— JNVYN NIVINOQ
90/ dl d3d _ “lvoa 1oia-non| 33999V
SANVN NIVNOQ | ~
= ~ _|J3nvN NIvinoa
=~ voa 1o1d SS3YAAQy dl
v9a 121 | 1surazli-|[e}
\
' SINNOD)
FOZIHOVO)\ ®
JNVN NIVNOQ
10z
yaav di
A6
NN L 4 N
ZTT 130N NOILO313d ST IOVAYIALNI TOT ¥3aLTd VT,
JNVYN NIVINOA VOQa / S0L / 13A0NW / S0Z / JNVYN Alil
AYVYNOILOIA @3NIVYL NOILO3.13a NIVINOQ)
@ vOa 101d L
€0
€01 INIT3dId 73O NOILOF1IA FJWVN NIVINOQ VOa AMYNOILOIA)

201 JJIAY3AS NOILITILIA VYN NIVINOA VOAa AYVYNOILDId

Patent Application Publication Oct. 31, 2024 Sheet 8 of 8 US 2024/0364742 A1

/\ 805
5
801

NETWORK
5) INTERFACE

PROCESSOR

DICTIONARY DGA

BUS DOMAIN NAME

DETECTION MODEL
PIPELINE

(]:D DOMAIN NAME | [543

80714 MEMORY FILTER

DETECTION MODEL
INTERFACE

e

N 803 811

FIG. 8

US 2024/0364742 Al

INLINE DETECTION OF DICTIONARY DGA
DOMAIN NAMES WITH REDUCED COST
AND LATENCY

BACKGROUND

[0001] The disclosure generally relates to transmission of
digital information (e.g., CPC subclass HO4L) and to net-
work architectures or network communication protocols for
network security (e.g., CPC subclass HO4L 63/00).

[0002] The Domain Name System (DNS) and associated
DNS protocol provides for the use of domain names to
access resources over the Internet through translation of the
domain names to, for example, their Internet Protocol (IP)
addresses or mail exchanger (MX) records. DNS clients and
servers communicate to translate domain names into IP
addresses through the process of DNS resolution. Once a
domain name that identifies a requested resource has been
resolved to its corresponding IP address, the resource can be
retrieved via the IP address (often by a web browser).
[0003] Domain names may be associated with malware,
such as domain names circulated for distribution of malware
or domain names used by command-and-control servers.
Domain names used by malicious actors, particularly in the
case of command-and-control servers, are often generated
with a domain generation algorithm (DGA). DGAs are
implemented for rapid, automated generation of domain
names. Domain names generated with a DGA often appear
as seemingly randomly generated strings (e.g., zm4flfg8.
com). Statistical and machine learning techniques for detect-
ing DGA-generated domain names have been developed in
response to the rise in prevalence of DGAs for malicious
domain name generation. With the improvement of tech-
niques for detecting DGA domain names, DGAs that lever-
age dictionary words, referred to as dictionary DGAs, have
become more widely used by malicious actors. Dictionary
DGA-generated domain names (hereinafter “dictionary
DGA domain names”) resemble legitimate domain names
more closely than conventional DGA domain names due to
the inclusion of dictionary words (e.g., bluecar-apple.net),
resulting in increased difficulty of detection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Embodiments of the disclosure may be better
understood by referencing the accompanying drawings.
[0005] FIG. 1 depicts a conceptual diagram of inline
classification of domain names as dictionary DGA or non-
dictionary DGA.

[0006] FIG. 2 is a conceptual diagram of filtering domain
names that are not candidate dictionary DGA domain names
out of a model pipeline without running a trained model.
[0007] FIG. 3 is a conceptual diagram of reduced-cost
classification of domain names as dictionary DGA or non-
dictionary DGA with a trained model.

[0008] FIG. 4 is a flowchart of example operations for
filtering non-candidate dictionary DGA domain names out
of a detection model pipeline.

[0009] FIG. 5 is a flowchart of example operations for
analyzing a domain name with NLP to determine candidacy
for detection as a dictionary DGA domain name based on
natural language features.

[0010] FIG. 6 is a flowchart of example operations for
reduced-cost classification of domain names as dictionary
DGA or non-dictionary DGA with a trained model.

Oct. 31, 2024

[0011] FIG. 7 depicts validating predictions output by the
trained model and building and maintaining a cache of
domain names and predicted classes that have been output
by the trained model.

[0012] FIG. 8 depicts an example computer system with a
dictionary DGA domain name detection model pipeline.

DESCRIPTION

[0013] The description that follows includes example sys-
tems, methods, techniques, and program flows to aid in
understanding the disclosure and not to limit claim scope.
Well-known instruction instances, protocols, structures, and
techniques have not been shown in detail for conciseness.

Terminology

[0014] This description uses shorthand terms related to
cloud technology for efficiency and ease of explanation.
When referring to “a cloud,” this description is referring to
the resources of a cloud service provider. For instance, a
cloud can encompass the servers, virtual machines, and
storage devices of a cloud service provider. In more general
terms, a cloud service provider resource accessible to cus-
tomers is a resource owned/managed by the cloud service
provider entity that is accessible via network connections.
Often, the access is in accordance with an application
programming interface (API) or software development kit
provided by the cloud service provider.

[0015] Use of the phrase “at least one of” preceding a list
with the conjunction “and” should not be treated as an
exclusive list and should not be construed as a list of
categories with one item from each category, unless specifi-
cally stated otherwise. A clause that recites “at least one of
A, B, and C” can be infringed with only one of the listed
items, multiple of the listed items, and one or more of the
items in the list and another item not listed.

Overview

[0016] Dictionary DGA domain name detection services
can be incorporated as part of inline or out-of-band security
systems. For inline systems, low latency and cost efficiency
are of an increased importance. Disclosed herein are tech-
niques for low latency and cost-efficient dictionary DGA
domain name detection by a service that includes a trained
machine learning model(s), which comprises a classifier that
predicts whether domain names are dictionary DGA gener-
ated. Instances of the trained model are executed by respec-
tive processing units (e.g., graphics processing units
(GPUs)). The service also filters domain names indicated in
DNS requests that are most likely not dictionary DGA
domain names out of the detection pipeline based on passive
DNS (pDNS) data and/or a heuristic analysis that leverages
natural language processing (NLP) techniques. Domain
names that are determined to be non-dictionary DGA gen-
erated and filtered out of the detection pipeline can be
analyzed further for maliciousness (e.g., at a firewall) with-
out being fed into the model for more computationally
expensive processing by the processing unit(s). To further
decrease latency and cost of dictionary DGA domain name
detection by reducing the quantity of domain names that are
input into the model, the service also caches domain names
and their corresponding classes that are output by the model
and searches the cache for domain names as another pre-
model input filtering stage. Domain names for which a

US 2024/0364742 Al

verdict cannot be reached at these stages are queued for
input into an instance of the model and for processing, with
the queued domain names processed in small batches and
load balanced across processing unit instances. Predicted
domain name classes output by the model can be cached for
subsequent cache reads to avoid multiple runs of the model
for the same domain name identified from multiple DNS
requests.

[0017] Additionally, predictions that a domain name is
dictionary DGA-generated may be validated based on
counts of dictionary DGA and non-dictionary DGA domain
names requested from the corresponding IP addresses. Cost
effectiveness and latency can be further improved by
accounting for fluctuations in traffic volume that impact the
quantity of domain names designated for input into the
trained model. Scaling of trained model instances can be
automated based on processor usage metrics and/or histori-
cal traffic volume data. If traffic bursts are detected in which
traffic volume suddenly increases and consequently
increases the quantity of domain names designated for input
into the trained model, at least a subset of the domain names
may bypass input into the trained model and instead be
classified based on heuristics for recent domain name
requests from the IP address(es) corresponding to the
domain names.

Example Illustrations

[0018] FIG. 1 depicts a conceptual diagram of inline
classification of domain names as dictionary DGA or non-
dictionary DGA. FIG. 1 depicts a client 107 that comprises
a DNS client and a DNS server 105. One DNS server is
depicted in this example for clarity and ease of understand-
ing, though it should be understood that multiple DNS
servers that may be of different types and can communicate
among each other to fulfill DNS requests can be present in
implementations. A firewall 109, which may be a physical or
virtual firewall, secures a network for which the client
device 107 has established a network connection. FIG. 1
also depicts a dictionary DGA domain name detection
service (“detection service”) 102 that comprises a dictionary
DGA domain name detection model pipeline (“model pipe-
line”) 103 with which the firewall 109 can communicate
(e.g., over a secure communication channel). For instance,
the detection service 102 and model pipeline 103 may be
part of a DNS security service that serves the firewall 109.
The detection service 102 may be hosted in a cloud that is
provisioned to the provider of the detection service 102. The
detection service 102 and model pipeline 103 are depicted as
separate from the firewall 109 in this example, though in
implementations, the detection service 102, model pipeline
103 and/or one or more components thereof may execute as
part of the firewall.

[0019] In this example, a client 107 communicates a DNS
request 123 for an exemplary domain name “login-stream-
ing.net” to the DNS server 105 over the Internet 111. The
firewall 109 intercepts the DNS request 123 and both
forwards the DNS request 123 to the DNS server 105 and a
copy of the DNS request 123 (or at least the domain name
extracted therefrom) to the detection service 102 for input
into the model pipeline 103. Dictionary DGA domain name
detection is referred to herein as being inline because
detection of dictionary DGA domain names by the detection
service 102, including classification of dictionary DGA
domain names by the model pipeline 103, is performed

Oct. 31, 2024

inline with respect to the flow of network traffic. The model
pipeline 103 comprises a domain name filter 101, a detection
model interface (“model interface™) 115, and a trained
dictionary DGA domain name detection model (“trained
model”) 117. The trained model 117 comprises a classifier
that has been trained to classify domain names as dictionary
DGA or non-dictionary DGA. The domain name filter 101
filters non-dictionary DGA domain names that can be clas-
sified as such without input into the trained model 117 out
of the model pipeline 103 to reduce latency and cost that
would otherwise be incurred from running the trained model
117. The model interface 115 manages queueing, batching,
and distributing domain names to be input into the trained
model 117 across instances of the trained model 117, which
are executed by corresponding processing units, which in
this example are GPUs. The model pipeline 103 is depicted
as having two stages of classification: classification stage A,
which occurs as a result of filtering non-DGA domain names
by the domain name filter 101, and classification stage B,
which occurs as a result of running the trained model 117
and can include any additional processing of domain names
by the detection service 102. The domain name filter 101,
which corresponds to classification stage A, is described in
further detail in reference to FIG. 2. The model interface 115
and trained model 117, which correspond to classification
stage B, are described in further detail in reference to FIG.
3.

[0020] With reference to this example, the firewall 109
obtains a class 125 of the domain name “login-streaming.
net” before or within a brief time period of receipt of a DNS
response 119 is received from the DNS server 105. This
allows the firewall 109 to forward a response 113 to the
client 107 accordingly, which either comprises the DNS
response 119 if the domain name indicated in the DNS
request 123 was classified as non-dictionary DGA and
determined to be benign (e.g., as a result of other URL
filtering/malware analysis performed by the firewall 109) or
comprises a denial of the request if the domain name was
determined to be dictionary DGA-generated (or otherwise
malicious). The firewall 109 may receive the class 125 as a
result of classification at either of the two stages of classi-
fication. In other words, the domain name “login-streaming.
net” may have been filtered out of the model pipeline 103 at
classification stage A as a result of being non-dictionary
DGA or may have been supplied as input to the trained
model 117 for classification at classification stage B.

[0021] FIG. 2 is a conceptual diagram of filtering domain
names that are not candidate dictionary DGA domain names
out of the model pipeline without running the trained model.
This example depicts a domain name 211, “aleagstikq.net,”
identified in a DNS request and forwarded to the model
pipeline 103. FIG. 2 depicts the domain name filter 101
processing the domain name 211 to determine whether it is
not a candidate dictionary DGA domain name and can thus
be filtered out of the model pipeline 103. The domain name
filter 101 comprises a pDNS-based filter 201 and a lexical
filter 203. The domain name 211 may be input into both the
pDNS-based filter 201 and lexical filter 203 at the same
time. Alternatively, one of the filters 201, 203 may be
prioritized and thus accept the domain name 211 as input
first, with the second of the filters 201, 203 accepting the
domain name 211 as input if the first is unable to filter the
domain name 211 out of the model pipeline 103.

US 2024/0364742 Al

[0022] The pDNS-based filter 201 queries a database 209
that stores allowed domain names based on the domain
name 211 to determine whether it is likely a benign, non-
dictionary DGA domain name. The database 209 is a data-
base or other data store that stores domain names that were
previously determined to correspond to benign, non-diction-
ary DGA domain names based on historical domain name
request data (e.g., pDNS data) and thus should be treated as
allowed by the model pipeline 103. The database 209 may
be periodically updated based on pDNS data (e.g., daily).
The allowed domain names extracted from historical domain
name request data in this example comprise names of root
domains having many subdomains and domain names that
are likely benign and are frequently requested but would be
false positive dictionary DGA domain name detections by
the trained model 117.

[0023] The database 209 may be populated with a first
plurality of entries comprising root domains identified in
pDNS data that have a sufficient number of subdomains
and/or a sufficient number of accesses. These root domains
can be determined based on identifying root domains that
are represented in pDNS data corresponding to a designated
time period (e.g., the last 90 days) and, for each identified
root domain, determining how many unique subdomains of
the root domain are represented in requests recorded during
this time period and/or how many requests during this time
period correspond to the root domain. For instance, the
pDNS-based filter 201 or an entity that communicates with
the pDNS-based filter 201 may have previously analyzed
pDNS data to identify root domains with a number of
requests and/or subdomains that exceeds a threshold, and the
threshold may be time-based (e.g., a threshold of 10,000
requests indicating a root domain and/or a threshold of
10,000 subdomains for the root domain identified within
pDNS data over the course of one day). Root domains
having a sufficient number of unique subdomains and/or a
sufficient number of requests identified from the pDNS data
that exceeds a threshold are inserted into the database 209,
where the numbers of subdomains and/or requests are con-
sidered sufficient if they exceed a respective threshold.
pDNS data may be periodically queried (e.g., daily by the
pDNS-based filter 201 or domain name filter 101) for root
domains having a number of requests and/or subdomains
that exceed a threshold(s) and thus satisfy a criterion for
insertion into the database 206. The frequently requested
root domains represented in the database 209 are thus
distinguishable from dictionary DGA domain names that are
generally less frequently requested. The pDNS-based filter
can extract the root domain from the domain name 211 (e.g.,
based on a domain name pattern) and query the database 209
for the extracted root domain. If the query returns a result
indicating that the root domain is represented in the database
209, the pDNS-based filter 201 can classify the domain
name 211 as non-dictionary DGA and filter the domain name
211 out of the model pipeline 103. This example assumes
that the domain name 211 does not comprise a root domain
represented in the database 209.

[0024] The database 209 may also be populated with a
second plurality of entries comprising known or likely
benign domain names that could constitute potential false
positive detections of dictionary DGA domain names by the
trained model 117. The model pipeline 103 or an offline
component thereof determines these benign or potential
false positive domain names periodically based on addi-

Oct. 31, 2024

tional domain names identified in pDNS data that satisfy
criteria for being classified as likely benign. For instance, the
model pipeline 103 can query a pDNS database/data store
for domain names that have been active for at least a
designated length of time (e.g., at least three months) and
that have received a sufficiently substantial amount of traffic
during their period of activity based on a count of the
corresponding DNS requests satisfying a criterion (e.g.,
exceeding a threshold). The model pipeline 103 (or its
offline component) inputs the domain names identified from
pDNS data that satisty these criteria into an instance of the
trained model 117 for classification. Those that the trained
model 117 predicts to be dictionary DGA generated can be
inserted into the database 206 to prevent subsequent poten-
tial false positive detection of the known/likely benign
domain names as dictionary DGA-generated. This instead
allows these domain names to be filtered out of the model
pipeline 103 by the pDNS-based filter 201.

[0025] Heuristic analysis of domain names by the lexical
filter 203 facilitates further filtering out of non-dictionary
DGA domain names out of the model pipeline 103. The
lexical filter 203 comprises a natural language processor
205, which is used to analyze the domain name 211 with
NLP based on non-dictionary DGA domain name identifi-
cation heuristics (“heuristics”) 207 to determine whether the
domain name 211 is non-dictionary DGA-generated. The
heuristics 207 comprise one or more heuristics that facilitate
identifying domain names that are likely not candidates for
being dictionary DGA-generated. The heuristics 207 can be
implemented with rules, thresholds, criteria, etc. As another
example, in implementations, the natural language processor
205 can comprise one or more machine learning models
(e.g., a classifier(s)) that are trained based on labelled data
and natural language features of domain names for both
dictionary DGA-generated and non-dictionary DGA-gener-
ated domain names. In this example, the heuristics 207 are
heuristics for identifying domain names that are not candi-
date dictionary DGA domain names. The heuristics 207 are
defined in terms of natural language features (i.e., descrip-
tors of a domain name that can be analyzed/observed with
NLP) and, for each natural language feature, at least a first
criterion for a value(s) of the natural language feature. As an
example, the heuristics 207 may comprise two heuristics: a
first heuristic indicating that domain names having an indi-
cation of randomness that satisfies a criterion (i.e., due to
appearing to be a randomly generated string of characters)
are not likely dictionary DGA-generated, and a second
heuristic indicating that domain names having a word count
below a threshold (e.g., two words) are not likely dictionary
DGA-generated.

[0026] To determine if a domain name is a randomly
generated string of characters, the natural language proces-
sor 205 may utilize a stochastic model (e.g., a Markov chain)
for measuring probabilities of characters following each
other in a string of natural language text; in this example, the
probability of characters of the domain name 211 appearing
in that order in natural language is the indication of ran-
domness that is measured based on NLP. The natural lan-
guage processor 205 may utilize an open-source or off-the-
shelf library that provides such a model. Probability
calculation using the stochastic model may be based on
neighboring character pairs, bigrams of the domain name,
trigrams of the domain name, etc. If the result probability
calculation for a domain name is low (e.g., below a thresh-

US 2024/0364742 Al

old), the natural language processor 205 determines that the
domain name is likely randomly generated and thus not
dictionary DGA-generated according to the second of the
heuristics 207. This example assumes that the natural lan-
guage processor 205 determines that the domain name 211
is a randomly generated string. Based on this assumption,
the domain name filter 101 filters the domain name 211 out
of the model pipeline 103 and returns an indication 213 that
the domain name 211 is non-dictionary DGA.

[0027] To determine if a domain name has a word count
that exceeds a threshold, the natural language processor 205
can split domain names into dictionary words. The natural
language processor 205 can determine possible combina-
tions of the one or more dictionary words indicated in the
domain name 211 and, if there are multiple combinations of
multiple words, select a combination with a lowest cost
based on a cost function (e.g., based on word frequencies).
The natural language processor 205 may utilize an open-
source or off-the-shelf library for determining the word(s) of
which the domain name 211 is comprised. The natural
language processor 205 evaluates the resulting word(s)
based on criteria for word count and/or length, where the
word-based criteria should be satisfied for the domain name
211 to be considered a candidate dictionary DGA domain
name. If the word(s) does not satisty the criteria and thus is
not a candidate for being dictionary DGA-generated, the
lexical filter 203 can filter the domain name 211 out of the
model pipeline 103. This example assumes that the lexical
filter 203 does not filter the domain name 211 out of the
model pipeline 103 based on word-based criteria.

[0028] While not depicted in FIG. 2, in implementations,
the domain name filter 101 may further utilize a low-latency
detector(s) to facilitate domain name classification, such as
a list(s) of known malicious and/or benign domains that it
queries for the domain name 211. For instance, the domain
name filter 101 may maintain or have access to an allow list
and/or block list built from domain names that were previ-
ously identified as being benign or malicious. As another
example, the domain name filter 101 may input the domain
name 211 into a classical or random DGA domain name
detector, such as before filtering by the pDNS-based filter
201 or the lexical filter 203 or before passing the domain
name 211 to the detection model interface 115. The known
malicious and/or benign domain names are not necessarily
limited to dictionary DGA or non-dictionary DGA domain
names and may include malicious domain names corre-
sponding to different malware families. Availability of
known malicious and/or benign domain names further facili-
tates low latency and cost efficiency.

[0029] FIG. 3 is a conceptual diagram of reduced-cost
classification of domain names as dictionary DGA or non-
dictionary DGA with a trained model. The domain name
classification is reduced-cost relative to use of the trained
model 117 without batching and load balancing by the
model interface 115. In FIG. 3, the model interface 115
distributes domain names designated for classification to N
instances of the trained model 117, depicted in FIG. 3 as
trained model instances 117A-N. Domain names designated
for classification are those that could not be classified as
non-dictionary DGA or discarded from candidacy as dic-
tionary DGA by the domain name filter 101.

[0030] A plurality of GPUs 307A-N execute correspond-
ing ones of the trained model instances 117A-N that are
hosted on a corresponding physical, virtual, or cloud-based

Oct. 31, 2024

machine (not depicted in FIG. 3). The GPUs 307A-N may
be physical, virtual, or cloud hosted GPUs. For instance,
each of the trained model instances 117A-N may execute in
a virtual machine for which a corresponding one of the
GPUs 307A-N has been made available. Additional physi-
cal/virtual hardware details are not depicted in FIG. 3 for
clarity and ease of understanding. While FIG. 3 depicts the
trained model instances 117A-N as being executed by
GPUs, in implementations, other types of processing units or
combinations thereof may be employed (e.g., central pro-
cessing units (CPUs) and/or tensor processing units
(TPUs)).

[0031] FIG. 3 assumes that instances of the trained model
117 were previously trained to classify domain names as
dictionary DGA-generated. The trained model instances
117A-N can comprise trained classifiers, each of which
accepts a feature vector generator for a domain name as
input, which were trained on labelled feature vectors gen-
erated based on known dictionary DGA and non-dictionary
DGA domain names. Each feature vector generated for a
domain name can comprise a numerical representation of the
domain name, where the numerical representation comprises
a plurality of numerical values to which each of the plurality
of characters of the domain name map. For instance, each
character that could possibly appear in a domain name (e.g.,
letters, numbers, symbols, etc.) may have been previously
assigned a corresponding numerical value with which that
character is represented in the feature vector. Feature vectors
may be fixed length and padded with zeroes. Feature vector
generation may be based on the root domain without the
top-level domain. Each of the trained model instances
117A-N outputs a prediction indicating whether the domain
name represented by the input feature vector is predicted to
be dictionary DGA-generated. Outputs of the trained model
instances 117A-N may further comprise a plurality of prob-
abilities, each of which is a predicted probability that the
domain name corresponds to a respective malware family.
Domain names may be classified as dictionary DGA-gen-
erated based on at least one of the probabilities exceeding a
threshold.

[0032] The model interface 115 comprises a batching
manager 301 and a load balancer 305. The batching manager
301 and the load balancer 305 encompassed by the model
interface 115 may execute as part of the same system or may
execute on different respective systems. The batching man-
ager 301 queues domain names that could not be filtered out
of the model pipeline 103 by the domain name filter 101 in
a queue 311 and batches queued domain names according to
batching criteria 303 for passage to one of the trained model
instances 117A-N and corresponding GPUs 307A-N. The
load balancer 305 load balances batches of domain names
across the GPUs 307A-N based on a load balancing algo-
rithm with which it was configured (e.g., as a configuration
setting, as a parameter value passed to the load balancer 305,
etc.). As depicted in FIG. 3, batching and load balancing by
the model interface 115 can be centralized. In other words,
one instance of the model interface 115 can distribute
domain names across each of the GPUs 307A-N. The
batching criteria 303 at least indicate a batch size and may
further indicate a time interval. The batch size indicates the
number of domain names that should be batched together
prior to communication to one of the trained model instances
117A-N (e.g., six domain names). The time interval corre-
sponds to an amount of time to wait for accumulation of

US 2024/0364742 Al

domain names that reach the specified batch size (e.g., 15
milliseconds). The batching manager 301 indicates to the
load balancer 305 of domain names corresponding to a batch
to send a batch of domain names that have been queued in
the queue 311 to one of the GPUs 307A-N when a first of the
batching criteria 303 have been satisfied. In other words, the
batching manager 301 indicates a batch of domain names to
the load balancer at the first of accumulating a number of
domain names in the queue 311 that satisfies the batch size
or passage of the interval of time since a prior batching
event. In the case of the latter, since the number of domain
names may not yet satisfy the batch size, the batching
manager 301 can indicate all domain names in the queue 311
at the time of expiration of the time interval to the load
balancer 305.

[0033] In this example, the model interface 115 receives
unclassified domain names 313 that were not filtered out by
the domain name filter 101. The batching manager 301
inserts the unclassified domain names 313 in the queue 311,
which is assumed to already have two domain names
inserted. FIG. 3 depicts exemplary domain names in the
queue 311 that were not discarded from candidacy as
dictionary DGA domain names based on pDNS data-based
filtering and lexical filtering based on heuristics as described
in reference to FIG. 2: “pending.suggest-affliction.com”,
“welcome.kayakmagazine.com”, and “fall-free.net”.
Assuming a batch size of five, the batching manager 301
determines after the insertion of the unclassified domain
names 313 in the queue 311 that one of the batching criteria
303 are satisfied and indicates a batch 309 of domain names
to the load balancer 305.

[0034] The load balancer 305 communicates the batch 309
of domain names to one of the GPUs 307A-N (e.g., via a
RPC) for classification by a corresponding one of the trained
model instances 117A-N based on a load balancing algo-
rithm with which it was configured. In this example, the load
balancer 305 communicates the batch 309 of domain names
to the GPU 307B for classification by the trained model 117.
Load balancing algorithms with which the load balancer 305
can be configured include random load balancing, round
robin load balancing, and smart load balancing. Smart load
balancing refers to load balancing that is informed by GPU
metrics tracked by the load balancer 305 so the load balancer
305 can predict which of the GPUs 307A-N is idle or closest
to finishing its scheduled jobs. For instance, the load bal-
ancer 305 may track the number of jobs to be scheduled for
each of the GPUs 307A-N based on the batch size and
number of batches indicated for classification by the batch-
ing manager 301 and timestamps for at least the last com-
munication of a domain name batch. In other examples, the
load balancer 305 may query each of the GPUs 307A-N
(e.g., through querying an entity that manages and/or has
provisioned the GPUs 307A-N, such as via an API exposed
by the provisioning/managing entity) for the number of
scheduled jobs. The model interface 115 receives predicted
classes 317 of domain names in the batch 309 as or after the
trained model 117B outputs their predicted classes. With
reference to FIG. 1, the model pipeline 103 may communi-
cate the predicted classes 317 to the firewall 109 for further
analysis and/or to inform the response 113 to generate and
send to the client 107.

[0035] Preprocessing of domain names to be input into
instances of the trained model, including generation of
feature vectors, can be performed by the model interface 115

Oct. 31, 2024

or can be encompassed by functionality of the trained model
117. While not depicted in FIG. 3, in the case of the latter,
the model interface 115 may comprise a domain name
preprocessor that generates feature vectors for each domain
name designated for input into one of the instances of the
trained model 117. Domain name preprocessing may be
performed prior to queueing of domain names in the queue
311 so that feature vectors of domain names are queued. In
other examples, domain name preprocessing may be per-
formed as part of batching of requests by the batching
manager 301. To maintain correspondence between domain
names and their predicted classes output by the trained
model 117, the model interface 115 may associate domain
names with their corresponding feature vectors via labels,
tags, etc., which the trained model 117 does not process.

[0036] The model interface 115 may also accommodate
traffic bursts. Traffic bursts occur as a result of a sudden
increase in DNS requests sent by endpoints. The model
interface 115 can detect traffic bursts upon identifying a
change in the number of incoming domain names for
classification within a designated time window (e.g., 30
seconds) that exceeds a threshold. When a traffic burst is
detected, the model interface 115 may record the average
traffic volume before the burst (e.g., in terms of numbers of
domain names incoming for classification). In some cases,
upon detecting a traffic burst, the model interface 115
modifies the batching criteria 303 to increase the batch size
to accommodate the burst. In other cases, the model inter-
face 115 may classify domain names included in traffic
bursts without forwarding the domain names to an instance
of the trained model 117 based on previously observed
trends in domain name requests for the IP address(es)
associated with the traffic burst (described in further detail in
reference to FIG. 7). Whether to increase the batch size of
domain name batches sent to instances of the trained model
117 or classify domain names without forwarding the
domain names to instances of the trained model 117 can be
based on the magnitude of the traffic burst (e.g., based on a
degree to which the change in traffic exceeds the threshold,
which may be given by an additional criterion). The end of
the traffic burst can be identified for resumption of normal,
pre-burst operations by the model interface 115 as described
above when the traffic volume and corresponding number of
incoming domain names to be classified return to normal
levels (e.g., based on returning to the average traffic volume
pre-traffic burst).

[0037] While not depicted in FIG. 3, in implementations,
available processor instances (e.g., GPUs) and correspond-
ing trained model instances can be dynamically scaled to
accommodate fluctuations in DNS traffic comprising
domain names designated for model classification by
increasing or decreasing available processor instances for
domain name classification accordingly. For instance, the
model interface 115 may interface with a provider of the
environment in which the processor instances are provi-
sioned (e.g., via a cloud service provider’s API) to add or
remove available processor instances. To determine how to
scale the available processor instances, the model interface
115 can query the currently available processor instances
(e.g., via an API of a cloud provider or other provider of the
processor instances) for current utilization metrics, such as
processor load, and subsequently request creation/addition
or deletion/removal of processor instances accordingly (e.g.,
via the API of the provider of the processor instances). As an

US 2024/0364742 Al

example, the number of processor instances that the model
interface 115 requests to be created or deleted may be based
on an aggregate of the processor utilization metrics (e.g., an
average of average and/or maximum processor loads across
processors) exceeding or being below a corresponding
threshold. As another example, the model interface 115 may
correlate traffic volume measurements (e.g., in terms of
requests per second) with a number of processor instances
that has been predetermined to accommodate the current
traffic volume and add/remove processor instances accord-
ingly.

[0038] As another example, the model interface 115 can
train a machine learning model to predict a number of
processor instances to be instantiated for executing corre-
sponding instances of the trained model at a given time
based on traffic logs and the corresponding processor utili-
zation metrics (e.g., average and/or maximum processor
loads). Feature vectors can be generated that comprise
current and/or past traffic volume statistics determined from
the traffic logs, indications of the corresponding time, such
as month, day, and/or time in seconds), and processor
utilization metrics obtained for that time. For training of the
machine learning model, the model interface 115 or an
offline system can train a classifier on the feature vectors that
are each labeled with the corresponding number of proces-
sors that were available at the time represented by the feature
vector. The classifier employed for processor instance pre-
diction may be a neural network, a random forest classifier,
etc. The trained classifier may be maintained by the offline
system but made available to the model interface 115 or may
be deployed to the model interface 115 (or another compo-
nent of the detection service 102). Once trained, the classi-
fier can be deployed or made available to the model interface
115. To predict whether and/or how to scale processor
instances, the model interface 115 can determine current and
historic traffic volume statistics for a recent time period (e.g.,
the last 5 minutes, processor utilization metrics, and the
current time represented in the manner in which the classi-
fier was trained and generate a feature vector or provide
these features to the offline system for generation of a feature
vector accordingly for input into the trained classifier. Upon
obtaining the output of the trained classifier that indicates a
predicted number of processor instances for accommodating
current traffic conditions, the model interface 115 can add
additional processor instances for additional availability of
trained model instances or remove one or more existing
processor instances accordingly.

[0039] FIGS. 1-3 depict one instance of the domain name
filter 101 and the model interface 115, with the model
interface 115 described as load balancing domain name
batches across a plurality of instances of the trained model
117. In implementations, the model pipeline 103 can also
comprise a plurality of instances of the domain name filter
101. In these cases, as DNS requests indicating domain
names are received, the model pipeline 103 distributes the
DNS requests/domain names across the instances of the
domain name filter 101 (e.g., with load balancing). The
model interface 115 is centralized in such implementa-
tions—in other words, one available instance of the model
interface 115 receives domain names to be classified from
each of the domain name filter 101 instances and load
balances batches of the domain names across the instances
of the trained model 117. Additionally, backup instances of
the model interface 115 may be deployed to maintain high

Oct. 31, 2024

availability but will remain idle/unused unless the primary
instance fails or is taken offline.

[0040] FIGS. 4-6 are flowcharts of example operations for
decreased cost and latency dictionary DGA domain name
detection. The example operations are described with refer-
ence to a domain name filter and a detection model interface
for consistency with the earlier figures and for ease of
understanding. The name chosen for the program code is not
to be limiting on the claims. Structure and organization of a
program can vary due to platform, programmer/architect
preferences, programming language, etc. In addition, names
of code units (programs, modules, methods, functions, etc.)
can vary for the same reasons and can be arbitrary. The
example operations also assume that a model comprising a
classifier has been trained to classify domain names as
dictionary DGA-generated or non-dictionary DGA-gener-
ated and is referred to hereinafter as “the trained model.”

[0041] FIG. 4 is a flowchart of example operations for
filtering non-candidate dictionary DGA domain names out
of a detection model pipeline. The detection model pipeline
accepts domain names identified in DNS requests as input
and comprises a trained classifier that has been trained to
classify domain names as non-dictionary DGA-generated
and dictionary DGA-generated. The example operations of
FIG. 4 serve to filter domain names out of the detection
model pipeline that can be classified as non-dictionary
DGA-generated without employing the trained model,
thereby conserving costs associated with computing
resources that execute the trained model.

[0042] At block 401, the domain name filter obtains a
domain name indicated in a request. The domain name filter
may obtain the domain name based on its extraction (e.g.,
based on copying) from a DNS request detected by a
cybersecurity appliance (e.g., a firewall). The domain name
filter or the firewall may extract the domain name from the
request.

[0043] At block 403, the domain name filter searches
allowed/benign domain names based on the domain name.
The domain name filter maintains or has access to database
or other data store of allowed/benign domain names that was
built from pDNS data. The allowed/benign domain names
comprise root domains that satisfy a first of one or more
criteria and/or domain names known or likely to be benign
that have been determined to be potential false positive
dictionary DGA detections by the trained model. Building
and maintaining of the allowed/benign domain names may
occur offline (i.e., relative to inline detection operations),
such as with daily updates to the allowed/benign domain
names based on querying pDNS data. The allowed/benign
domain names can comprise root domains that, during a
subset of pDNS data corresponding to a designated time
period (e.g., the last 90 days), were indicated in a number of
DNS requests that exceeded a first threshold and/or had a
number of subdomains identified in DNS requests that
exceeded a second threshold. For instance, the domain name
filter or a component/entity that communicates therewith
may have previously identified root domains represented in
a subset of pDNS data for which the number of correspond-
ing DNS requests exceeds a first threshold (e.g., 100,000
requests) and inserted those root domains into the allowed/
benign domain names. As another example, the domain
name filter or a component/entity that communicates there-
with may have previously identified the root domains rep-
resented in a subset of pDNS data, determined how many

US 2024/0364742 Al

unique subdomains can be identified to correspond to each
root domain, and inserted those root domains having a
number of unique subdomains that exceeded a second
threshold (e.g., 10,000 subdomains) into the allowed/benign
domain names. In implementations, the allowed/benign
domain names may be further built from other data sources,
such as traffic logs, allow/block lists, etc., though the
example operations assume the use of pDNS data for
frequently requested root domains. The domain name filter
determines the root domain of the domain name and
searches these allowed/benign domain names for the root
domain. The allowed/benign domain names may addition-
ally or alternatively comprise domain names that were
identified from pDNS data and determined to satisfy criteria
indicative of the domain names being likely benign but were
classified as dictionary DGA by the trained model and are
thus potential false positive dictionary DGA detections.
Domain names that were determined to satisfy the criteria
can include those that were determined based on the pDNS
data to have been active for at least a designated length of
time and were indicated in a number of DNS requests that
exceeds a threshold.

[0044] At block 405, the domain name filter determines if
the domain name can be classified as a benign, non-diction-
ary DGA-generated. The domain name is likely benign and
non-dictionary DGA and can be classified accordingly if the
domain name or its root domain is represented in the
allowed/benign domain names (i.e., if the search resulted in
finding a matching domain name or root domain) and thus
corresponds to a popular root domain or a known/presumed
benign domain name. If the domain name cannot be clas-
sified as a likely benign, non-dictionary DGA domain name,
operations continue at block 407. If the domain name can be
classified as such, operations continue at block 411.

[0045] At block 407, the domain name filter analyzes the
domain name with NLP to determine one or more natural
language features of the domain name and evaluates the
natural language feature(s) based on heuristics for identify-
ing non-dictionary DGA domain names. The domain name
filter may leverage an off-the-shelf and/or open-source NLP
library (ies) for analyzing the domain name based on one or
more heuristics. The heuristic(s) may be implemented with
a rule(s), criterion (a), threshold(s), etc. Exemplary natural
language features indicated by the heuristics as correspond-
ing to non-candidate dictionary DGA domain names include
random strings and word counts and/or lengths satistying
respective thresholds, where values of the natural language
features that are evaluated based on the heuristics are an
indication of randomness of the domain name and a word
count and/or length, respectively. The domain name filter
utilizes NLP to determine natural language features of the
domain name and determines whether the natural language
features satisfy corresponding criteria indicated by the heu-
ristics to inform a determination of whether the domain
name is not a candidate dictionary DGA domain name.
Heuristic analysis of domain names with NLP is described
in further detail in reference to FIG. 5.

[0046] At block 409, the domain name filter determines if
the domain name is not a candidate dictionary DGA domain
name based on the heuristics. If the domain name is not a
candidate dictionary DGA domain name and thus can be
classified as non-dictionary DGA, operations continue at
block 411. If the domain name has an unknown classification

Oct. 31, 2024

and is thus still a candidate dictionary DGA domain name,
operations continue at block 413.

[0047] At block 411, the domain name filter filters the
domain name out of the model pipeline. Filtering the domain
name out of the model pipeline can include indicating (e.g.,
to the cybersecurity appliance that detected the DNS
request) that the domain name is non-dictionary DGA,
generating a notification, etc. Further analysis of the domain
name, such as by the cybersecurity appliance, may be
performed to determine if the domain name is malicious or
benign.

[0048] At block 413, the domain name filter passes the
domain name to the trained model for classification. Domain
names that could not be filtered out due to classification as
non-dictionary DGA are considered candidate dictionary
DGA domain names and thus are designated for classifica-
tion by the trained model.

[0049] FIG. 5 is a flowchart of example operations for
analyzing a domain name with NLP to determine candidacy
for detection as a dictionary DGA domain name based on
natural language features. The domain name filter may
leverage one or more off-the-shelf or open-source libraries
for implementing NLP techniques as described in the
example operations.

[0050] At block 501, the domain name filter parses the
domain name. The domain name filter may parse the domain
name to separate the components of the domain name (i.e.,
the top-level domain, subdomain(s), etc.). As an example,
the domain name filter may parse the domain name so the
top-level domain name can be discarded from the second-
level domain, subdomain(s), etc. of the domain name. Pars-
ing of the domain name is depicted with dashed lines since
input formats of domain names for NLP can vary. For
instance, the domain name filter may leverage an NLP
library (ies) that processes full domain names instead of
parsing domain names into components before processing.
As another example, the domain name filter may copy the
domain name and parse the copy.

[0051] At block 503, the domain name filter analyzes the
domain name to determine if the domain name is a random
string. Domain names that are random strings, or strings of
characters that appear to be randomly generated, are likely
not dictionary DGA domain names and thus can be classified
as non-dictionary DGA without input into the trained model.
The domain name filter thus analyzes the domain name with
NLP to determine an indication of randomness of the
domain name. The domain name filter can compute prob-
abilities of characters appearing sequentially in natural lan-
guage based on a stochastic model (e.g., a Markov chain).
The stochastic model and optionally the probability com-
putation functionality may be made available via a library
leveraged by the domain name filter. The domain name filter
computes a probability for the sequence of characters of
which the domain name is comprised.

[0052] At block 505, the domain name filter determines if
the domain name is a random string. The domain name filter
evaluates the indication of randomness of the domain name
based on one or more criteria, where the criteria are desig-
nated by a first heuristic that facilitates identification of
non-dictionary DGA domain names. For instance, the
domain name may evaluate the probability resulting from
the computation performed for the domain name at block
503 against a threshold. If the probability for the domain
name is below the threshold and thus has a low probability

US 2024/0364742 Al

of comprising a sequence of characters found in natural
language, the domain name can be considered to be a
random string and thus non-dictionary DGA. If the domain
name is not a random string, operations continue at block
507. If the domain name is a random string, operations
continue at block 511, where the domain name filter indi-
cates that the domain name is non-dictionary DGA due.

[0053] At block 507, the domain name filter analyzes the
domain name to determine its word count and/or word
length(s). The domain name filter determines how many
dictionary words can be identified in the domain name and
may further determine the length(s) of the one or more
identified words. If multiple combinations of dictionary
words can be identified, the domain name filter can select
one of the word combinations to evaluate based on a cost,
probability, aggregate of word frequencies, or another mea-
sure of cost/probability, which may be offered by an NLP
library being used.

[0054] At block 509, the domain name filter determines if
one or more word-based criteria (i.e., word count and/or
word length(s)) for candidate dictionary DGA domain
names are satisfied. The criteria may indicate that candidate
dictionary DGA domain names should have at least two
words with a length of four as represented by corresponding
word count and length thresholds, where the criteria are
indicated by a second heuristic that facilitates identification
of non-dictionary DGA domain names. Domain names that
do not satisty the word-based criteria can be discarded as
candidate dictionary DGA domain names through filtering
out of the model pipeline. If the criteria are not satisfied,
operations continue at block 511, where the domain name
filter indicates that the domain name is non-dictionary DGA.
If the criteria are satisfied and thus the domain name is still
a candidate for detection as dictionary DGA, operations
continue at block 513.

[0055] At block 513, the domain name filter indicates that
the domain name class is unknown. Domain names of an
unknown class are candidates for dictionary DGA domain
name detection since they could not be classified to the
contrary (i.e., as non-dictionary DGA domain names) based
on the heuristics.

[0056] FIG. 6 is a flowchart of example operations for
reduced-cost classification of domain names as dictionary
DGA or non-dictionary DGA with a trained model. As
described in reference to FIG. 3, incorporating batching and
load balancing in the model pipeline contributes to the
reduced cost of domain name classification as described
herein. The example operations assume that a plurality of
processors, which may comprise GPUs, CPUs, and/or TPUs,
are available for executing a corresponding plurality of
instances of the trained model. The processors may be
available/provisioned in a data center, in a cloud environ-
ment, and/or in a virtualized environment.

[0057] At block 601, the detection model interface queues
one or more domain names that were not filtered out of the
model pipeline. Domain names that are passed to the detec-
tion model interface are candidate dictionary DGA domain
names designated for input into the model pipeline. In other
words, the domain name filter could not discard the domain
names from candidacy based on the preliminary classifica-
tion stage. Block 601 is depicted with dashed lines because
domain name collection/queueing and classification by the
trained model can be asynchronous.

Oct. 31, 2024

[0058] At block 603, the detection model interface deter-
mines that a batching criterion is satisfied. The batching
criterion can be passage of a designated amount of time
since the last criterion satisfaction event (e.g., denoted by
expiration of a timer), collection of a designated batch size
of first domain names in the queue, or whichever comes first.
For example, the detection model interface may receive and
queue domain names until the first of queueing of N domain
names (for a batch size of N) or expiration of a 15-milli-
second timer since the last criterion satisfaction event irre-
spective of the batch size upon timer expiration. Because
domain name collection/queueing and classification by the
trained model can be asynchronous as mentioned above, the
detection model interface can continue queueing domain
names in the queue during performance of the subsequent
example operations.

[0059] At block 605, the detection model interface selects
one of the processor instances executing a corresponding
instance of the trained model to process the batch of domain
names based on a load balancing algorithm. The detection
model interface can comprise a load balancer that imple-
ments a load balancing algorithm, such as round robin or
random load balancing. As another example, the detection
model interface can load balance domain name batches
across processor instances based on a “smart” load balanc-
ing algorithm that accounts for the number of scheduled jobs
and timestamps of last processing job requests for domain
name batches across the processor instances. This informa-
tion may be recorded by the detection model interface as
domain name batches are passed to processor instances
and/or obtained from querying a provider/managing entity
of the processor instances. With this information, the detec-
tion model interface can predict which of the processor
instances is idle or closest to completion of its scheduled
jobs first and select that processor instance for processing
the batch of domain names.

[0060] At block 607, the detection model interface passes
the batch of domain names to the selected processor instance
that executes the corresponding trained model instance. The
detection model interface may make a remote procedure call
(RPC) to the selected processor instance or an interface
thereof that indicates the domain name batch as a parameter
value. For instance, the detection model interface and pro-
cessor instances may be built/structured according to the
gRPC framework so that communication between the detec-
tion model interface and processor instances is according to
the gRPC framework.

[0061] At block 609, the detection model interface obtains
one or more outputs from the trained model that each
indicate a predicted class of a corresponding domain name
of the batch. Each of the outputs indicates whether the
corresponding domain name is predicted to be a dictionary
DGA domain name or a non-dictionary DGA domain name.
For instance, each output may indicate probabilities that the
domain name belongs to each class of dictionary DGA-
generated or non-dictionary DGA-generated and may fur-
ther indicate probabilities of the domain name belonging to
an indicated malware family.

[0062] Atblock 611, the detection model interface updates
the domain name cache with each of the domain names and
their predicted classes. The detection model interface inserts
each domain name and corresponding class output by the
trained model into the cache. The detection model interface
can also insert a timestamp for each inserted cache entry

US 2024/0364742 Al

indicating the time of classification (e.g., based on a current
time). At this point, example operations for the batch passed
to the selected GPU instance at block 607 may be complete,
though queuing and classification of additional domain
names as described by the example operations may be
ongoing.

[0063] FIG. 7 depicts validating predictions output by the
trained model and building and maintaining a cache of
domain names and predicted classes that have been output
by the trained model. As described in FIG. 6, a domain name
cache can be updated with domain names and their classes
predicted by the trained model FIG. 7 depicts such a domain
name cache (“cache”) 704 that the detection service 102
maintains and/or with which components of the model
pipeline 103 can communicate. Entries of the cache 704
comprise domain names and their associated class predic-
tions based on outputs of the trained model 117. Entries of
the cache 704 may correspond to a previous time window of
a given length to reflect recent queries, with the length of the
time window designated by a time criterion (e.g., a time
criterion of the previous hour). Each cache 704 entry may
also indicate a timestamp of insertion into the cache or a
timestamp of the last query of the cache 704 for the domain
name (whichever is more recent), with domain names main-
tained in the cache 704 if their timestamps indicate the time
criterion is satisfied (e.g., if the domain name was cached or
last searched for within the previous hour). Functionality of
the model interface 115 that encompasses prediction vali-
dation and caching may execute as part of the same system
on which the batching manager 301 and load balancer 305
described in reference to FI1G. 3 execute or as part of another
system(s).

[0064] FIG. 7 is annotated with a series of letters A-C.
Each letter represents a stage of one or more operations.
Although these stages are ordered for this example, the
stages illustrate one example to aid in understanding this
disclosure and should not be used to limit the claims. Subject
matter falling within the scope of the claims can vary from
what is illustrated. This example depicts the model interface
115 as validating predictions of dictionary DGA domain
names output by the trained model 117; in implementations,
the detection service 102 or another component thereof may
perform validation of predictions. Additionally, this example
assumes that a domain name 705 “fall-free.net” that was
identified in a DNS request was not filtered out of the model
pipeline 103 by the domain name filter 101 and was thus
passed to the model interface 115 for input into the trained
model 117.

[0065] At stage A, the model interface 115 obtains a
prediction 703 from output of the trained model 117 indi-
cating that the domain name 705 is predicted to be dictionary
DGA-generated. If the domain name 705 were predicted to
be non-dictionary DGA-generated by the trained model 117,
the model interface 115 would update the cache 704 with the
domain name 705 and the predicted class of non-dictionary
DGA-generated; however, the model interface 115 identifies
the prediction as corresponding to the dictionary DGA-
generated class of domain names and proceeds with valida-
tion of the prediction 703.

[0066] At stage B, the model interface 115 determines
whether the prediction 703 can be validated based on classes
of domain names previously requested from an IP address
707 associated with the DNS request comprising the domain
name 705. The model interface 115 identifies the IP address

Oct. 31, 2024

707 from a header(s) of the packet comprising the DNS
request or based on receipt of the IP address 707 from a
cybersecurity device that detected the DNS request and
queries a database 706 for the IP address 707. The database
706 is accessible to (as depicted in this example) or main-
tained by the detection service 702 and comprises IP
addresses associated with detected DNS requests and, for
each IP address, unique non-dictionary DGA and dictionary
DGA domain names identified in DNS requests detected for
the IP address. For instance, the database 706 may maintain
a list of unique dictionary DGA domain names and corre-
sponding IP addresses and a list of non-dictionary DGA
domain names and corresponding IP addresses. The data-
base 706 can be updated as domain names are filtered out of
the model pipeline 103 by the domain name filter 101 and/or
as outputs are obtained from the trained model 117. Domain
names maintained in the database 706 may be associated
with a fixed period of time, such as the domain names
requested in the previous hour; updates to the maintained
domain names may thus be associated with timestamps. The
IP addresses corresponding to counts in the database 706
may be IP addresses of endpoints comprising a DNS client
or IP addresses of a cybersecurity device that detected the
associated DNS requests (e.g., before or after network
address translation, respectively). The model interface 115
determines counts 709 that comprise counts of dictionary
DGA and non-dictionary DGA domain names identified in
requests from the IP address 707 during the time period
based on querying the database 706. For instance, the model
interface 115 can query the database 706 for lengths of each
of'the lists comprising domain names of each class that have
a timestamp falling within the time period.

[0067] Upon retrieval of counts 709 from the database 706
that indicate counts of dictionary DGA and non-dictionary
DGA domain names identified in requests from the IP
address 707 during the time period, the model interface 115
determines whether the prediction 703 can be validated
based on one or more validation criteria. The validation
criteria can be based on a threshold count of dictionary DGA
domain names detected in the time period corresponding to
the counts 709, a proportion of those of the domain names
represented in the counts 709 that were determined to be
dictionary DGA domain names relative to the total number
of' domain names requested during the time period, etc. If the
prediction 703 is validated, the model interface 115 may
indicate the predicted class of the domain name 705, such as
by communicating the prediction 703 to a firewall (e.g., the
firewall 109 of FIG. 1) or other network component that
detected the DNS request comprising the domain name 705.
If the prediction 703 cannot be validated, the model interface
115 may indicate a verdict that the domain name 705 is
non-dictionary DGA generated to prevent false positive
detections.

[0068] At stage C, the model interface 115 caches the
domain name 705 and the prediction 703 and updates the
database 706. The detection model interface 715 updates the
cache 704 with an entry 711 comprising the domain name
705 and the prediction 703. The entry 711 may further
include a timestamp associated with the cache insertion so
that the most relevant (e.g., based on the timestamp satis-
fying a time criterion) domain names and predictions are
maintained in the cache and may replace less recent domain
names and predictions.

US 2024/0364742 Al

[0069] Further, the cache 704 can be queried as part of
determining whether a domain name can be classified with-
out input into the trained model 117. Querying of the cache
704 can occur after the domain name filter 101 analyzes a
domain name and determines that the domain name cannot
be filtered out of the model pipeline 103 and before the
model interface 115 queues the domain name for input into
the trained model, for example. If a domain name for which
the model interface 115 searches the cache 704 was cached
or last searched in the time window given by the time
criterion for which the cache 704 has been configured, the
model interface 115 will obtain a result indicating the
domain name and its predicted class. Additionally, if the
result from querying the cache indicates that the domain
name is predicted to be dictionary DGA-generated, the
model interface 115 may validate the prediction before
reporting the verdict, as satisfaction of validation criteria
based on counts and/or proportions of dictionary DGA and
non-dictionary DGA domain names identified in requests for
the corresponding IP address as well as the validation
criteria themselves can change over time. The domain name
can thus be classified accordingly without input into the
trained model 117 for reduced latency and cost associated
with domain name classification operations.

Variations

[0070] The flowcharts are provided to aid in understanding
the illustrations and are not to be used to limit scope of the
claims. The flowcharts depict example operations that can
vary within the scope of the claims. Additional operations
may be performed; fewer operations may be performed; the
operations may be performed in parallel; and the operations
may be performed in a different order. For example, the
operations depicted in blocks 503-505 and blocks 507-509
can be performed in parallel or concurrently. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by program code. The program code may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable machine or appa-
ratus.

[0071] As will be appreciated, aspects of the disclosure
may be embodied as a system, method or program code/
instructions stored in one or more machine-readable media.
Accordingly, aspects may take the form of hardware, soft-
ware (including firmware, resident software, micro-code,
etc.), or a combination of software and hardware aspects that
may all generally be referred to herein as a “circuit,”
“module” or “system.” The functionality presented as indi-
vidual modules/units in the example illustrations can be
organized differently in accordance with any one of platform
(operating system and/or hardware), application ecosystem,
interfaces, programmer preferences, programming lan-
guage, administrator preferences, etc.

[0072] Any combination of one or more machine readable
medium(s) may be utilized. The machine readable medium
may be a machine readable signal medium or a machine
readable storage medium. A machine readable storage
medium may be, for example, but not limited to, a system,
apparatus, or device, that employs any one of or combina-
tion of electronic, magnetic, optical, electromagnetic, infra-
red, or semiconductor technology to store program code.
More specific examples (a non-exhaustive list) of the

Oct. 31, 2024

machine readable storage medium would include the fol-
lowing: a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or
Flash memory), a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage
device, or any suitable combination of the foregoing. In the
context of this document, a machine readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruc-
tion execution system, apparatus, or device. A machine
readable storage medium is not a machine readable signal
medium.

[0073] A machine readable signal medium may include a
propagated data signal with machine readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
machine readable signal medium may be any machine
readable medium that is not a machine readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0074] Program code embodied on a machine readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0075] The program code/instructions may also be stored
in a machine readable medium that can direct a machine to
function in a particular manner, such that the instructions
stored in the machine readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

[0076] FIG. 8 depicts an example computer system with a
dictionary DGA domain name detection model pipeline. The
computer system includes a processor 801 (possibly includ-
ing multiple processors, multiple cores, multiple nodes,
and/or implementing multi-threading, etc.). The computer
system includes memory 807. The memory 807 may be
system memory or any one or more of the above already
described possible realizations of machine-readable media.
The computer system also includes a bus 803 and a network
interface 805. The system also includes dictionary DGA
domain name detection model pipeline 811. The dictionary
DGA domain name detection model pipeline 811 classifies
domain names as dictionary DGA or non-dictionary DGA
with a combination of heuristics, historical domain name
data (e.g., pDNS data), machine learning, and caching. At a
first stage of classification, the dictionary DGA domain
name detection model pipeline 811 utilizes heuristics and
historical domain name data to inform detection of non-
dictionary DGA domain names without additional process-
ing by a trained machine learning model. At a second stage,
the dictionary DGA domain name detection model pipeline
811 inputs domain names that were not filtered out as
non-dictionary DGA at the first stage or identified in a cache
comprising domain names and their classes into the trained
machine learning model for classification. The dictionary
DGA domain name detection model pipeline 811 comprises
a domain name filter 813 and a detection model interface
815. The domain name filter 813 identifies and filters out
non-dictionary DGA domain names at the first stage. The

US 2024/0364742 Al

detection model interface 815 batches and load balances
domain names across instances of the trained machine
learning model that are executed by corresponding proces-
sors (e.g., GPUs) at the second stage. While depicted as part
of the same computer system for ease of understanding, in
implementations, the domain name filter 813 and detection
model interface 815 do not necessarily execute as part of the
same system. Any one of the previously described function-
alities may be partially (or entirely) implemented in hard-
ware and/or on the processor 801. For example, the func-
tionality may be implemented with an application specific
integrated circuit, in logic implemented in the processor 801,
in a co-processor on a peripheral device or card, etc. Further,
realizations may include fewer or additional components not
illustrated in FIG. 8 (e.g., video cards, audio cards, addi-
tional network interfaces, peripheral devices, etc.). The
processor 801 and the network interface 805 are coupled to
the bus 803. Although illustrated as being coupled to the bus
803, the memory 807 may be coupled to the processor 801.

1. A method comprising:

detecting a request that indicates a first domain name;

determining if the first domain name can be filtered out of

a model pipeline that comprises a trained model,
wherein the trained model was previously trained to
classify domain names as dictionary domain generation
algorithm (DGA) generated or non-dictionary DGA
generated,
wherein determining if the first domain name can be
filtered out of the model pipeline comprises deter-
mining if the first domain name is non-dictionary
DGA generated based on at least one of heuristics for
identifying non-dictionary DGA generated domain
names based on natural language features of domain
names and data of allowed domain names; and
based on determining that the first domain name can be
filtered out of the model pipeline, filtering the first
domain name out of the model pipeline, wherein fil-
tering the first domain name out of the model pipeline
comprises indicating that the first domain name is
non-dictionary DGA generated.

2. The method of claim 1, wherein determining if the first
domain name is non-dictionary DGA generated based on the
heuristics comprises determining one or more natural lan-
guage features of the first domain name based on analyzing
the first domain name with natural language processing
(NLP) and evaluating the one or more natural language
features based on corresponding ones of one or more criteria
indicated by the heuristics.

3. The method of claim 2, wherein determining the one or
more natural language features comprises determining a
count of words of which the first domain name is comprised
based on analyzing the first domain name with NLP.

4. The method of claim 3, wherein evaluating the one or
more natural language features based on corresponding ones
of one or more criteria comprises evaluating the count of
words based on a first criterion indicated by the heuristics,
wherein the first criterion indicates a threshold word count,
wherein determining if the first domain name is non-dic-
tionary DGA generated comprises determining if the count
of words is below the threshold.

5. The method of claim 2, wherein determining the one or
more natural language features comprises determining if the
first domain name is a random string based on analyzing the

Oct. 31, 2024

first domain name with NLP to determine an indication of
randomness of the first domain name.

6. The method of claim 5, wherein evaluating the one or
more natural language features based on corresponding ones
of one or more criteria comprises evaluating the indication
of randomness of the first domain name based on a second
criterion indicated by the heuristics, wherein determining if
the first domain name is non-dictionary DGA generated
comprises determining if the indication of randomness sat-
isfies the second criterion.

7. The method of claim 1, wherein determining if the first
domain name is non-dictionary DGA generated based on the
data of allowed domain names comprises, determining a
root domain of the first domain name; and

determining, based on passive Domain Name System

(pDNS) data, at least one of if a number of requests that
indicate the root domain in the pDNS data exceeds a
first threshold and if a number of unique subdomains
corresponding to the root domain that can be identified
in the pDNS data exceeds a second threshold.

8. The method of claim 1 further comprising, based on
determining that the first domain name cannot be filtered out
of the model pipeline, designating the first domain name for
input into the trained model based on queueing the first
domain name in a queue, wherein the queue maintains
domain names to be input into one of a plurality of instances
of the trained model.

9. The method of claim 8 further comprising:

retrieving a batch of domain names from the queue,

wherein the batch of domain names is of a designated
size; and

passing the batch of domain names to a first instance of

the plurality of instances of the trained model that is
selected by a load balancing algorithm.

10. The method of claim 9 further comprising selecting
the first instance of the trained model based on the load
balancing algorithm,

wherein the load balancing algorithm comprises round

robin load balancing or smart load balancing,

wherein selecting the first instance of the trained model

based on smart load balancing comprises.

predicting which of a plurality of processors executing
corresponding ones of the plurality of instances of
the trained model is idle or closest to completion of
scheduled jobs based on determining at least one of
a quantity of scheduled jobs and a time of a last job
request for each of the plurality of processors; and

based on predicting that a first processor of the plurality
of processors is idle or closest to completion of
scheduled jobs, selecting the first processor, wherein
the first processor corresponds to the first instance of
the trained model.

11. The method of claim 1 further comprising, based on
determining that the first domain name cannot be filtered out
of the model pipeline,

querying a cache that maintains a plurality of domain

names and corresponding predicted classes that were
previously output by the trained model; and

based on determining that the first domain name does not

have a corresponding entry in the cache, designating
the first domain name for input into the trained model.

12. One or more non-transitory machine-readable media
having program code stored thereon, the program code
comprising instructions to:

US 2024/0364742 Al

identify a first domain name indicated in a request;
determine whether the first domain name can be discarded
from candidacy as a dictionary domain generation
algorithm (DGA) domain name without input into a
trained model based on at least one of known benign
domain name data and one or more heuristics corre-
sponding to natural language features of domain names
identifiable with natural language processing (NLP),
wherein the trained model predicts whether domain
names were generated with a dictionary DGA;
based on a determination that the first domain name can
be discarded from candidacy without input into the
trained model, indicate that the first domain name is
non-dictionary DGA generated; and
based on a determination that the first domain name
cannot be discarded from candidacy without input into
the trained model, designate the first domain name for
input into the trained model.
13. The non-transitory machine-readable media of claim
12,
wherein the instructions to determine whether the first
domain name can be discarded from candidacy as a
dictionary DGA domain name based on the one or more
heuristics comprise instructions to analyze the first
domain name with natural language processing (NLP)
to determine one or more natural language features of
the first domain name and evaluate the one or more
natural language features based on the one or more
heuristics,
wherein the one or more natural language features com-
prise at least one of a word count of the first domain
name and an indication of whether the first domain
name is a random string.
14. The non-transitory machine-readable media of claim
13,
wherein the instructions to evaluate the one or more
natural language features based on the one or more
heuristics comprise instructions to evaluate the word
count based on a first of the one or more heuristics that
indicates a word count threshold,
wherein the instructions to determine that the first domain
name can be discarded from candidacy comprise
instructions to determine that the word count of the first
domain name is below than the word count threshold.
15. The non-transitory machine-readable media of claim
13,
wherein the instructions to evaluate the one or more
natural language features comprise instructions to
evaluate the indication of whether the first domain
name is a random string based on a second of the one
or more heuristics indicating a criterion for indications
of random strings,
wherein the instructions to determine that the first domain
name can be discarded from candidacy comprises
determining that the indication of whether the first
domain name is a random string satisfies the criterion.
16. The non-transitory machine-readable media of claim
12,
wherein the instructions to determine whether the first
domain name can be discarded from candidacy as a
dictionary DGA domain name without input into the
trained model based on the known benign domain name
data comprise instructions to determine, based on a set
of passive Domain Name System (pDNS) data, at least

Oct. 31, 2024

one of whether the set of pDNS data indicate that a
number of DNS requests indicating a root domain of
the first domain name exceeds a first threshold or
whether the set of pDNS data indicate a number of
unique subdomains associated with the root domain in
DNS requests exceeds a second threshold,

wherein the set of pDNS data corresponds to a first time

period.

17. An apparatus comprising:

a processor; and

a machine-readable medium having instructions stored

thereon that are executable by the processor to cause
the apparatus to,
detect a request that indicates a first domain name,
wherein the request was received by a security
appliance;
determine whether to filter the first domain name out of
a model pipeline that comprises a trained model
previously trained to classity domain names as dic-
tionary domain generation algorithm (DGA) gener-
ated or non-dictionary DGA generated,
wherein the instructions to determine whether to
filter the first domain name out of the model
pipeline comprise instructions to determine if the
first domain name is not a candidate for detection
as a dictionary DGA domain name based on at
least one of a set of heuristics and allowed domain
name data; and
based on a determination to filter the first domain name
out of the model pipeline, indicate to the security
appliance that the first domain name is non-diction-
ary DGA generated.

18. The apparatus of claim 17, wherein the instructions
executable by the processor to cause the apparatus to deter-
mine if the first domain name not a candidate for detection
as a dictionary DGA domain name based on the set of
heuristics comprise instructions executable by the processor
to cause the apparatus to analyze the first domain name
based on the set of heuristics with natural language process-
ing (NLP), wherein the set of heuristics comprise heuristics
for determining if a domain name is non-dictionary DGA
generated.

19. The apparatus of claim 17, wherein the instructions
executable by the processor to cause the apparatus to ana-
lyze the first domain name with NLP comprise at least one
of instructions to analyze the first domain name with NLP to
determine a count of words of which the first domain name
is comprised and instructions to analyze the first domain
name with NLP to for identification of random strings.

20. The apparatus of claim 19, wherein the set of heuris-
tics comprises at least one of a first heuristic and a second
heuristic,

wherein the first heuristic indicates that domain names

having a word count that is below a threshold are not
candidate dictionary DGA domain names,

wherein the second heuristic indicates that domain names

that are random strings are not candidate dictionary
DGA domain names.

21. The apparatus of claim 17, wherein the allowed
domain name data comprise a plurality of root domains
determined from passive Domain Name System (pDNS)
data, wherein the plurality of root domains comprise at least
one of root domains that were determined to have been
indicated in a number of requests identified in the pDNS data

US 2024/0364742 Al Oct. 31, 2024
13

that exceeds a first threshold and root domains having a
number of unique subdomains identified in the pDNS data
that exceeds a second threshold, wherein the instructions
executable by the processor to cause the apparatus to deter-
mine if the first domain name is not a candidate for detection
as a dictionary DGA domain name based on the allowed
domain name data comprise instructions executable by the
processor to cause the apparatus to
determine a root domain of the first domain name and
determine if the root domain is indicated in the plurality
of root domains.
22. The apparatus of claim 17 further comprising instruc-
tions executable by the processor to cause the apparatus to:
based on a determination not to filter the first domain
name out of the model pipeline, queue the first domain
name in a queue for input into an instance of the trained
model, wherein a plurality of instances of the trained
model are executed by corresponding ones of a plural-
ity of processors;
retrieve a batch of domain names from the queue, wherein
the batch of domain names is of a designated size; and
pass the batch of domain names to an instance of the
trained model executed by a first processor of the
plurality of processors, wherein the first processor is
selected based on a load balancing algorithm.

#* #* #* #* #*

