

Proactively hunting for low-reputed infrastructure used by large cybercrimes and APTs

Nabeel Mohamed, Keerthiraj Nagaraj, Janos Szurdi, Alex Starov 10/05/2024

Agenda

- Motivation with examples
- Methodology
 - Knowledge graph construction
 - Graph Al learner
- Case studies

Introduction

- Reactive: Currently, a lot of attacks are detected *after* they are launched
- Proactive: Can we detect attacks **before** they are launched or **early** during the attack?

Observations

Attackers often

- Rotate their attack infrastructure (domains, IPs, file hashes, certificates)
- Automate hosting related activities
- **Reuse or share** the same attack infrastructure

Attackers set up their infrastructure **before** they launch the attack.

Existing analyzers often **detect only parts of** active attack infrastructures.

Pivot on these observations to proactively protect **patient zero** victims.

Example Resource Sharing in the Web

Malicious Domains Share/Rotate Hosting Infrastructure

Malicious domainsIP addresses

Top hosting services:

- BL Networks
- AS-CHOOPA
- NameCheap
- Amazon
- Digital Ocean

5

Malicious Domains Share TLS Fingerprints

Multiple IP Addresses Share Same SSH Fingerprint

Malicious IPs SSH fingerprint

An active self-signed certificate used by Gamaredon

Multiple Phishing Sites Use the Same Phishing Kit

Malicious domains Phishing kit

Multiple Malicious URLs Distribute Same Malware

TeslaCrypt delivery URLs

Same Malware Connects to Multiple C2 Domains

Gamaredon stealer

Gamaredon remote admin tool (Pteranodon)

Our Approach

* Same applies to IPs

Overall Pipeline

Guided Discovery of Domains (Co-Hosting Relationship)

Graph AI-based Detection of Malicious Domains

Graph Schema

- Nodes
 - o Domain
 - o Subdomain
 - o IP
 - File hash
 - TLS/SSH certificate fingerprint
- Edges
 - Domain-Subdomain
 - Domain-IP
 - Domain-FileHash
 - IP-SSH, Domain-TLS

Labeled Data

- Malicious
 - In-house malicious domains
- Benign
 - Tranco top 100K domains
 - In-house benign domains

Features

- **Lexical features** (e.g., # brand/suspicious keywords, # hyphens)
- **Hosting features** (e.g., # IPs, hosting duration)
- WHOIS features (e.g., age, days to expiration, privacy)
- **Certificate features** (e.g., type, issuer)
- IP features (e.g., # domains, ASN, CC)
- **Content-based features** (e.g., # iframes, webform?)

Training the Graph AI (GNN) Model

(2K from each class)

Preliminary Results

Model	Precision*	Recall*			
Local features	81.05	70.10	Metric\Thresh.	0.50	0.98
Shallow embedding (node2vec)	84.07	72.23	Dragician	05.20/	00.0%
Shallow embedding (metapath2vec)	86.22	74.54	Precision	95.2%	99.9%
			Recall	92.3%	53.1%
Local features + Shallow embedding	89.01	78.32			
GNN	95.20	92.30			

* At 0.5 default cut-off threshold

Results - Why it works

Week 1

Week 2

Week 3

Case Studies

Case Study 1: Gamaredon APT

- A prominent Russian APT group targeting mainly Ukraine
- Operational since 2014

Gamaredon - Seed Domains

- offspringo.ru
- dostaliho.ru
- komekgo.shop
- mexv.ru
- erinaceuso.ru
- mahirgo.shop
- holmiumo.ru

🎶 paloalto

Gamaredon - Guided Expansion

Seed malicious domains

Expanded unknown domains

IP addresses

Gamaredon - Flagged Malicious Domains

Seed malicious domains

Expanded unknown domains

IP addresses

Flagged malicious domains

Later 34 domains were flagged later as Malware by other vendors.

Case Study 2: Postal Phishing Campaign

- A recent campaign targeting USPS and 12 other national postal services around the world.
- Attack vector: Smishing
- Collected ~450 seed domains from this campaign
 - Hosted on ~400 unique IP addresses
- Identified ~5000 additional domains hosted on these
 ~400 IP addresses in the last 3 months.
 - ~30% of them later flagged malicious by other vendors

Postal Phishing Campaign: Seed Domains and Hosting Infrastructure

Hosting infrastructure shared by phishing domains targeting anpost[.]com (Ireland's national postal service).

Postal Phishing Campaign - Graph Expansion

Graph expansion for the phishing pages targeting An Post (anpost[.]com)

Postal Phishing Campaign - Flagged Malicious Domains

Summary

- Threat actors unintentionally leave behind traces of information
 - Domains, IPs, Certificates, File Hashes, Phishing Kits
- How we can **pivot on these traces** to find malicious domains before they are weaponized
 - Building a knowledge graph
 - Training a GNN over the knowledge graph
- Two examples showing that our detector can proactively uncover criminal infrastructure
- Uncovered tens of thousands of high-confidence malicious domains in the last two months

Q&A

Nabeel Mohamed - <u>mmohamednabe@paloaltonetworks.com</u> in <u>linkedin.com/in/myoosuf</u>

> Janos Szurdi - jszurdi@paloaltonetworks.com in linkedin.com/in/szurdi

